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Abstract

The area of large deviations is a set of asymptotic results on rare events probabilities
and a set of methods to derive such results. Large deviations theory is a very active
field in applied probability, and finds important applications in finance, where ques-
tions related to extremal events play an increasingly major role. Financial applications
are various, and range from Monte-Carlo methods and importance sampling in option
pricing to estimates of large portfolio losses subject to credit risk, or long term portfo-
lio investment The purpose of these lectures is to explain some essential techniques in
large deviations theory, and to illustrate how they are applied recently for example in
stochastic volatility models to compute implied volatilities near maturities.
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1 Introduction

The area of large deviations is a set of asymptotic results on rare event probabilities and
a set of methods to derive such results. Large deviations is a very active area in applied
probability, and finds important applications in finance where questions related to extremal
events play an increasingly important role. Large deviations arise in various financial
contexts. They occur in risk management for the computation of the probability of large
losses of a portfolio subject to market risk or the default probabilities of a portfolio under
credit risk. Large deviations methods are largely used in rare events simulation and so
appear naturally in the approximation of option pricing, in particular for barrier options
and far from the money options. More recently, there has been a growing literature on
small time asymptotics for stochastic volatility models.

We illustrate our purpose with the following toy example. Let X be a (real-valued)
random variable, and consider the problem of computing or estimating P[X > `], the
probability that X exceeds some level `. In finance, we may think of X as the loss of a
portfolio subject to market or credit risk, and we are interested in the probability of large
loss or default probability. The r.v. X may also correspond to the terminal value of a stock
price, and the quantity P[X > `] appears typically in the computation of a call or barrier
option, with a small probability of payoff when the option is far from the money or the
barrier ` is large. To estimate p = P[X > `], a basic technique is Monte Carlo simulation:
generate n independent copies X1, . . . , Xn of X, and use the sample mean:

S̄n =
1
n

n∑
i=1

Yi, with Yi = 1Xi>`.

The convergence of this estimate (when n → ∞) follows from the law of large numbers,
while the standard rate of convergence is given, via the central limit theorem, in terms of
the variance v = p(1− p) of Yi:

P
[
|S̄n − p| ≥

a√
n

]
→ 2Φ

(
− a√

v

)
,

where Φ is the cumulative distribution function of the standard normal law. Furthermore,
the convergence of the estimator S̄n is precised with the large deviation result, known here
as the Cramer’s theorem, which is concerned with approximation of rare event probabilities
P[S̄n ∈ A], and typically states that

P
[
|S̄n − p| ≥ a

]
= Cne

−γn,

for some constant γ > 0, and where (Cn) is a sequence converging at a subexponential rate,
i.e. lnCn/n goes to zero as n goes to infinity. In the above relation, γ is the leading order
term on logarithm scale in large deviations theory, and Cn represents the correction term.
In these lectures, we shall mainly focus on the leading order term.

Let us now turn again to the estimation of p = P[X > `]. As mentioned above, the rate
of convergence of the naive estimator S̄n is determined by:

Var(S̄n) =
Var(1X>`)

n
=

p(1− p)
n

,
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and the relative error is

relative error =
standard deviation of S̄n

mean of S̄n
=

√
p(1− p)√
np

.

Hence, if p = P[X > `] is small, and since
√
p− p2/p → ∞ as p goes to zero, we see that

a large sample size (i.e. n) is required for the estimator to achieve a reasonable relative
error bound. This is a common occurence when estimating rare events. In order to improve
the estimate of the tail probability P[X > `], one is tempted to use importance sampling
to reduce variance, and hence speed up the computation by requiring fewer samples. This
consists basically in changing measures to try to give more weight to “important” outcomes,
(increase the default probability). Since large deviations theory also deals with rare events,
we can see its strong link with importance sampling.

To make the idea concrete, consider again the problem of estimating p = P[X > `], and
suppose that X has distribution µ(dx). Let us look at an alternative sampling distribution
ν(dx) absolutely continuous with respect to µ, with density f(x) = dν/dµ(x). The tail
probability can then be written as:

p = P[X > `] =
∫

1x>`µ(dx) =
∫

1x>`φ(x)ν(dx) = Eν [1X>`φ(X)],

where φ = 1/f , and Eν denotes the expectation under the measure ν. By generating
i.i.d. samples X̃1, . . . , X̃n, . . . with distribution ν, we have then an alternative unbiased and
convergent estimate of p with

S̃n =
1
n

n∑
i=1

1X̃i>`φ(X̃i),

and whose rate of convergence is determined by

Varν(S̃n) =
1
n

∫ (
1x>` − pf(x)

)2
φ2(x)ν(dx).

The minimization of this quantity over all possible ν (or f) leads to a zero variance with
the choice of a density f(x) = 1x>`/p. This is of course only a theoretical result since it
requires the knowledge of p, the very thing we want to estimate! However, by noting that
in this case ν(dx) = f(x)µ(dx) = 1x>`µ(dx)/P[X > `] is nothing else than the conditional
distribution of X given {X > `}, this suggests to use an importance sampling change of
measure that makes the rare event {X > `} more likely. This method of suitable change of
measure is also the key step in proving large deviation results.

We provide another taste of large deviations through an elementary example. Throw a
dice n times ans set fi as the frequency of number i = 1, . . . , 6, and denote by x =

∑6
i=1 ifi

the mean value of the n random values. By the (ordinary) law of large numbers, when n

becomes large, we have: x → 3.5, and fi → 1/6, i = 1, . . . , 6. The limiting frequencies
r = (1/6, . . . , 1/6) are called a priori probabilities. Now, given the information that x ≥
4, which is a rare event, to which numbers converge the frequencies fi? The answer is
given by a “conditional” law of large numbers deduced from large deviations theory. The
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conditional probability will concentrate in the neighborhood of a specific point, and this
point can be computed through the minimization of a functional: the rate function or
entropy or Shanon information. Indeed, denote by p(n1, . . . , n6) the probability that the
numbers 1, . . . , 6 appear n1, . . . , n6 times (respectively) in the n throws of dices (

∑6
i=1 ni

= n), so that

p(n1, . . . , n6) =
1
6n

n!
n1! . . . n6!

.

By using Stirling formula: k! ' kke−k
√

2πk, we get

p(n1, . . . , n6) ' 1
6n

nn

nn1
1 . . . nn6

6

√
2πn√

2πn1 . . .
√

2πn6
.

Since fi = ni/n, we get

1
n

ln p ' −I(f) := −
6∑
i=1

fi ln
( fi

1/6

)
.

I(f) > 0 is the relative entropy of the a posteriori probability f = (fi)i with respect to the
a priori probability r = (1/6). Hence, p ' e−nI(f). This means that when n is large, p
is concentrated where I(f) is minimal. When there are no constraints or information, the
minimizing point is attained for f∗i = 1/6 and I(f∗) = 0: this is the ordinary law of large
numbers! When there is a constraint, e.g.

∑6
i=1 ifi ≥ 4, the conditional probability will be

concentrated around the point f∗ which minimizes I(f) under the constraint. Here, the a
posteriori probabilities are the solutions to the optimization problem:

min
6∑
i=1

fi ln
( fi

1/6

)
under

6∑
i=1

ifi ≥ 4,
6∑
i=1

fi = 1,

and are given by: f∗1 = 0.103, f∗2 = 0.122, f∗3 = 0.146, f∗4 = 0.174, f∗5 = 0.207, f∗6 =
0.346, to be compared with 1/6 = 0.1666. These ideas, concepts and computations in
large deviations (concentration phenomenon, entropy functional minimization, etc ..) still
hold in general random contexts, including diffusion processes, but need of course more
sophisticated mathematical treatments.

2 An overview of large deviations theory

2.1 Laplace transform and change of probability measures

If X is a (real-valued) random variable on (Ω,F) with probability distribution µ(dx), the
cumulant generating function (c.g.f.) of µ is the logarithm of the Laplace function of X,
i.e.:

Γ(θ) = ln E[eθX ] = ln
∫
eθxµ(dx) ∈ (−∞,∞], θ ∈ R.

Notice that Γ(0) = 0, and Γ is convex by Hölder inequality. We denote D(Γ) = {θ ∈ R :
Γ(θ) <∞}, and for any θ ∈ D(Γ), we define a probability measure µθ on R by:

µθ(dx) = exp(θx− Γ(θ))µ(dx). (2.1)
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Suppose that X1, . . . , Xn, . . . , is an i.i.d. sequence of random variables with distribution µ
and consider the new probability measure Pθ on (Ω,F) with likelihood ratio evaluated at
(X1, . . . , Xn), n ∈ N∗, by:

dPθ
dP

(X1, . . . , Xn) =
n∏
i=1

dµθ
dµ

(Xi) = exp
(
θ

n∑
i=1

Xi − nΓ(θ)
)
. (2.2)

By denoting Eθ the corresponding expectation under Pθ, formula (2.2) means that for all
n ∈ N∗,

E
[
f(X1, . . . , Xn)

]
= Eθ

[
f(X1, . . . , Xn) exp

(
− θ

n∑
i=1

Xi + nΓ(θ)
)]
, (2.3)

for all Borel functions f for which the expectation on the l.h.s. of (2.3) is finite. Moreover,
the random variables X1, . . . , Xn, n ∈ N∗, are i.i.d. with probability distribution µθ under
Pθ. Actually, the relation (2.3) extends from a fixed number of steps n to a random number
of steps, provided the random horizon is a stopping time. More precisely, if τ is a stopping
time in N for X1, . . . , Xn, . . ., i.e. the event {τ < n} is measurable with respect to the
algebra generated by {X1, . . . , Xn} for all n, then

E
[
f(X1, . . . , Xτ )1τ<∞

]
= Eθ

[
f(X1, . . . , Xτ ) exp

(
− θ

τ∑
i=1

Xi + τΓ(θ)
)

1τ<∞
]
, (2.4)

for all Borel functions f for which the expectation on the l.h.s. of (2.4) is finite.
The cumulant generating function Γ records some useful information on the probability

distributions µθ. For example, Γ′(θ) is the mean of µθ. Indeed, for any θ in the interior of
D(Γ), differentiation yields by dominated convergence:

Γ′(θ) =
E[XeθX ]
E[eθX ]

= E
[
X exp

(
θX − Γ(θ)

)]
= Eθ[X]. (2.5)

A similar calculation shows that Γ′′(θ) is the variance of µθ. Notice in particular that if 0
lies in the interior of D(Γ), then Γ′(0) = E[X] and Γ′′(0) = V ar(X).

Bernoulli distribution
Let µ the Bernoulli distribution of parameter p. Its c.g.f. is given by

Γ(θ) = ln(1− p+ peθ).

A direct simple algebra calculation shows that µθ is the Bernoulli distribution of parameter
peθ/(1− p+ peθ).

Poisson distribution
Let µ the Poisson distribution of intensity λ. Its c.g.f. is given by

Γ(θ) = λ(eθ − 1).

A direct simple algebra calculation shows that µθ is the Poisson distribution of intensity
λeθ. Hence, the effect of the change of probability measure Pθ is to multiply the intensity
by a factor eθ.

6



Normal distribution
Let µ the normal distribution N (0, σ2), whose c.g.f. is given by:

Γ(θ) =
θ2σ2

2
.

A direct simple algebra calculation shows that µθ is the normal distribution N (θσ2, σ2).
Hence, if X1, . . . , Xn are i.i.d. with normal distribution N (0, σ2), then under the change of
measure Pθ with likelihood ratio:

dPθ
dP

(X1, . . . , Xn) = exp
(
θ

n∑
i=1

Xi − n
θ2σ2

2

)
,

the random variables X1, . . . , Xn are i.i.d. with normal distribution N (θσ2, σ2): the effect
of Pθ is to change the mean of Xi from 0 to θσ2. This result can be interpreted as the
finite-dimensional version of Girsanov’s theorem.

Exponential distribution
Let µ the exponential distribution of intensity λ. Its c.g.f. is given by

Γ(θ) =

{
ln
(

λ
λ−θ
)
, θ < λ

∞, θ ≥ λ

A direct simple algebra calculation shows that for θ < λ, µθ is the exponential distribution
of intensity λ− θ. Hence, the effect of the change of probability measure Pθ is to shift the
intensity from λ to λ− θ.

2.2 Cramer’s theorem

The most classical result in large deviations area is Cramer’s theorem. This concerns large
deviations associated with the empirical mean of i.i.d. random variables valued in a finite-
dimensional space. We do not state the Cramer’s theorem in whole generality. Our purpose
is to put emphasis on the methods used to derive such result. For simplicity, we consider the
case of real-valued i.i.d. random variables Xi with (nondegenerate) probability distribution
µ of finite mean EX1 =

∫
xµ(dx) < ∞, and we introduce the random walk Sn =

∑n
i=1Xi.

It is well-known by the law of large numbers that the empirical mean Sn/n converges in
probability to x̄ = EX1, i.e. limn P[Sn/n ∈ (x̄ − ε, x̄ + ε)] = 1 for all ε > 0. Notice also,
by the central limit theorem that limn P[Sn/n ∈ [x̄, x̄ + ε)] = 1/2 for all ε > 0. Large
deviations results focus on asymptotics for probabilities of rare events, for example of the
form P

[
Sn
n ≥ x

]
for x > EX1, and state that

P
[Sn
n
≥ x

]
' e−γn,

for some constant γ to be precised later. The symbol ' means that the ratio is one in
the log-limit (here when n goes to infinity), i.e. 1

n ln P[Sn/n ≥ x] → −γ. The rate of
convergence is characterized by the Fenchel-Legendre transform of the c.g.f. Γ of X1:

Γ∗(x) = sup
θ∈R

[
θx− Γ(θ)

]
∈ [0,∞], x ∈ R.
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As supremum of affine functions, Γ∗ is convex. The sup in the definition of Γ∗ can be
evaluated by differentiation: for x ∈ R, if θ = θ(x) is solution to the saddle-point equation,
x = Γ′(θ), then Γ∗(x) = θx − Γ(θ). Notice, from (2.5), that the exponential change of
measure Pθ put the expectation of X1 to x. Actually, exponential change of measure is a
key tool in large deviations methods. The idea is to select a measure under which the rare
event is no longer rare, so that the rate of decrease of the original probability is given by
the rate of decrease of the likelihood ratio. This particular change of measure is intended
to approximate the most likely way for the rare event to occur.

By Jensen’s inequality, we show that Γ∗(EX1) = 0. This implies that for all x ≥ EX1,
Γ∗(x) = supθ≥0

[
θx− Γ(θ)

]
, and so Γ∗ is nondecreasing on [EX1,∞).

Theorem 2.1 (Cramer’s theorem)
For any x ≥ EX1, we have

lim
n→∞

1
n

ln P
[Sn
n
≥ x

]
= −Γ∗(x) = − inf

y≥x
Γ∗(y). (2.6)

Proof. 1) Upper bound. The main step in the upper bound ≤ of (2.6) is based on Chebichev
inequality combined with the i.i.d. assumption on the Xi:

P
[Sn
n
≥ x

]
= E

[
1Sn
n
≥x
]
≤ E

[
eθ(Sn−nx)

]
= exp

(
nΓ(θ)− θnx

)
, ∀θ ≥ 0.

By taking the infimum over θ ≥ 0, and since Γ∗(x) = supθ≥0[θx − Γ(θ)] for x ≥ EX1, we
then obtain

P
[Sn
n
≥ x

]
≤ exp

(
− nΓ∗(x)

)
.

and so in particular the upper bound ≤ of (2.6).

2) Lower bound. Since P
[
Sn
n ≥ x

]
≥ P

[
Sn
n ∈ [x, x + ε)

]
, for all ε > 0, it suffices to show

that

lim
ε→0

lim inf
n→∞

1
n

ln P
[Sn
n
∈ [x, x+ ε)

]
≥ −Γ∗(x). (2.7)

For simplicity, we assume that µ is supported on a bounded support so that Γ is finite
everywhere, and there exists a solution θ = θ(x) > 0 to the saddle-point equation: Γ′(θ) =
x, i.e. attaining the supremum in Γ∗(x) = θ(x)x−Γ(θ(x)). The key step is now to introduce
the new probability distribution µθ as in (2.1) and Pθ the corresponding probability measure
on (Ω,F) with likelihood ratio:

dPθ
dP

=
n∏
i=1

dµθ
dµ

(Xi) = exp
(
θSn − nΓ(θ)

)
.

Then, we have by (2.3) and for all ε > 0:

P
[Sn
n
∈ [x, x+ ε)

]
= Eθ

[
exp

(
− θSn + nΓ(θ)

)
1Sn
n
∈[x,x+ε)

]
= e−n(θx−Γ(θ))Eθ

[
exp

(
− nθ(Sn

n
− x)

)
1Sn
n
∈[x,x+ε)

]
≥ e−n(θx−Γ(θ))e−n|θ|εPθ

[Sn
n
∈ [x, x+ ε)

]
,
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and so
1
n

ln P
[Sn
n
∈ [x, x+ ε)

]
≥ −[θx− Γ(θ)]− |θ|ε+

1
n

ln Pθ
[Sn
n
∈ [x, x+ ε)

]
. (2.8)

Now, since Γ′(θ) = x, we have Eθ[X1] = x, and by the law of large numbers and CLT:
limn Pθ

[
Sn
n ∈ [x, x + ε)

]
= 1/2 (> 0). We also have Γ∗(x) = θx − Γ(θ). Therefore,

by sending n to infinity and then ε to zero in (2.8), we get (2.7). Finally, notice that
infy≥x Γ∗(y) = Γ∗(x) since Γ∗ is nondecreasing on [EX1,∞). 2

Examples
1) Bernoulli distribution: for X1 ∼ B(p), we have Γ∗(x) = x ln

(
x
p

)
+ (1− x) ln

(
1−x
1−p
)

for x
∈ [0, 1] and ∞ otherwise.
2) Poisson distribution: for X1 ∼ P(λ), we have Γ∗(x) = x ln

(
x
λ

)
+ λ− x for x ≥ 0 and ∞

otherwise.
3) Normal distribution: for X1 ∼ N (0, σ2), we have Γ∗(x) = x2

2σ2 , x ∈ R.
2) Exponential distribution: for X1 ∼ E(λ), we have Γ∗(x) = λx−1− ln(λx) for x > 0 and
Γ∗(x) = ∞ otherwise.

Remark 2.1 Cramer’s theorem possesses a multivariate counterpart dealing with the large
deviations of the empirical means of i.i.d. random vectors in Rd.

Remark 2.2 The independence of the random variables Xi in the large deviations result
for the empirical mean S̄n =

∑n
i=1Xi/n can be relaxed with the Gärtner-Ellis theorem,

once we get the existence of the limit:

Γ(θ) := lim
n→∞

1
n

ln E
[
enθ.S̄n

]
, θ ∈ Rd.

The rate of convergence of the large deviation principle is then given by the Fenchel-
Legendre transform of Γ:

Γ∗(x) = sup
θ∈Rd

[θ.x− Γ(θ)], x ∈ Rd.

Remark 2.3 (Relation with importance sampling)
Fix n and let us consider the estimation of pn = P[Sn/n ≥ x]. A standard estimator for
pn is the average with N independent copies of X = 1Sn/n≥x. However, as shown in the
introduction, for large n, pn is small, and the relative error of this estimator is large. By
using an exponential change of measure Pθ with likelihood ratio

dPθ
dP

= exp
(
θSn − nΓ(θ)

)
,

so that

pn = Eθ
[

exp
(
− θSn + nΓ(θ)

)
1Sn
n
≥x

]
,

we have an importance sampling (IS) (unbiased) estimator of pn, by taking the average of
independent replications of

exp
(
− θSn + nΓ(θ)

)
1Sn
n
≥x.
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The parameter θ is chosen in order to minimize the variance of this estimator, or equivalently
its second moment:

M2
n(θ, x) = Eθ

[
exp

(
− 2θSn + 2nΓ(θ)

)
1Sn
n
≥x

]
≤ exp

(
− 2n(θx− Γ(θ))

)
(2.9)

By noting from Cauchy-Schwarz’s inequality thatM2
n(θ, x)≥ p2

n = P[Sn/n ≥ x]' Ce−2nΓ∗(x)

as n goes to infinity, from Cramer’s theorem, we see that the fastest possible exponential
rate of decay of M2

n(θ, x) is twice the rate of the probability itself, i.e. 2Γ∗(x). Hence, from
(2.9), and with the choice of θ = θx s.t. Γ∗(x) = θxx−Γ(θx), we get an asymptotic optimal
IS estimator in the sense that:

lim
n→∞

1
n

lnM2
n(θx, x) = 2 lim

n→∞

1
n

ln pn.

This parameter θx is such that Eθx [Sn/n] = x so that the event {Sn/n ≥ x} is no more
rare under Pθx , and is precisely the parameter used in the derivation of the large deviations
result in Cramer’s theorem.

2.3 Large deviations and Laplace principles

In this section, we present an approach to large deviations theory based on Laplace principle,
which consists in the evaluation of the asymptotics of certain expectations.

We first give the formal definition of a large deviation principle (LDP). Consider a
sequence {Zε}ε on (Ω,F ,P) valued in some topological space X . The LDP characterizes
the limiting behaviour as ε → 0 of the family of probability measures {P[Zε ∈ dx]}ε on X
in terms of a rate function. A rate function I is a lower semicontinuous function mapping
I : X → [0,∞]. It is a good rate function if the level sets {x ∈ X : I(x) ≤M} are compact
for all M < ∞.

The sequence {Zε}ε satisfies a LDP on X with rate function I (and speed ε) if:
(i) Upper bound: for any closed subset F of X

lim sup
ε→0

ε ln P[Zε ∈ F ] ≤ − inf
x∈F

I(x).

(ii) Lower bound: for any open subset G of X

lim inf
ε→0

ε ln P[Zε ∈ G] ≥ − inf
x∈G

I(x).

If F is a subset of X s.t. infx∈F o I(x) = infx∈F̄ I(x) := IF , then

lim
ε→0

ε ln P[Zε ∈ F ] = −IF ,

which formally means that P[Zε ∈ F ] ' Ce−IF /ε for some constant C. The classical
Cramer’s theorem considered the case of the empirical mean Zε = Sn/n of i.i.d. random
variables in Rd, with ε = 1/n.

We first state a basic transformation of LDP, namely a contraction principle, which
yields that LDP is preserved under continuous mappings.
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Theorem 2.2 (Contraction principle)
Suppose that {Zε}ε satisfies a LDP on X with a good rate function I, and let f be a
continuous mapping from X to Y. Then {f(Xε)}ε satisfies a LDP on Y with the good rate
function

J(y) = inf
{
I(x) : x ∈ X , y = f(x)

}
.

In particular, when f is a continuous one-to-one mapping, J = I(f−1).

Proof. Clearly, J is nonnegative. Since I is a good rate function, for all y ∈ f(X ), the
infimum in the definition of J is obtained at some point of X . Thus, the level sets of J ,
ΨJ(M) := {y : J(y) ≤M} are equal to

ΨJ(M) = {f(x) : I(x) ≤M} = f(ΨI(M)),

where ΨI(M) := {x : I(x) ≤ M} is the corresponding level set of I. Since ΨI(M) is
compact, so are the sets ΨJ(M), which means that J is a good rate function. Moreover,
by definition of J , we have for any A ⊂ Y:

inf
y∈A

J(y) = inf
x∈f−1(A)

f(x).

Since f is continuous, the set f−1(A) is open (resp. closed) for any open (resp. closed) A
⊂ Y. Therefore, the LDP for {f(Zε)}ε with rate function J follows as a consequence of the
LDP for {Zε}ε with rate function I. 2

We now provide an equivalent formulation of large deviation principle, relying on Varad-
han’s integral formula, which involves the asymptotics behavior of certain expectations. It
extends the well-known method of Laplace for studying the asymptotics of certain integrals
on R: given a continuous function ϕ from [0, 1] into R, Laplace’s method states that

lim
n→∞

1
n

ln
∫ 1

0
enϕ(x)dx = max

x∈[0,1]
ϕ(x).

Varadhan result’s is formulated as follows:

Theorem 2.3 (Varadhan)
Suppose that {Zε}ε satisfies a LDP on X with good rate function I. Then, for any bounded
continuous function ϕ : X → R, we have

lim
ε→0

ε ln E
[
eϕ(Zε)/ε

]
= sup

x∈X

[
ϕ(x)− I(x)

]
. (2.10)

Proof. (a) Since ϕ is bounded, there exists M ∈ (0,∞) s.t. −M ≤ ϕ(x) ≤ M for all x ∈
X . For N positive integer, and j ∈ {1, . . . , N}, we consider the closed subsets of X

FN,j =
{
x ∈ X : −M +

2(j − 1)M
N

≤ ϕ(x) ≤ −M +
2jM
N

}
,

11



so that ∪Nj=1FN,j = X . We then have from the large deviations upper bound on (Zε),

lim sup
ε→0

ε ln E
[
eϕ(Zε)/ε

]
= lim sup

ε→0
ε ln

∫
X
eϕ(Zε)/εP[Zε ∈ dx]

≤ lim sup
ε→0

ε ln
( N∑
j=1

∫
FN,j

eϕ(Zε)/εP[Zε ∈ dx]
)

≤ lim sup
ε→0

ε ln
( N∑
j=1

e(−M+2jM/N)/εP[Zε ∈ FN,j ]
)

≤ lim sup
ε→0

ε ln
(

max
j=1,...,N

e(−M+2jM/N)/εP[Zε ∈ FN,j ]
)

≤ max
j=1,...,N

(
−M +

2jM
N

+ lim sup
ε→0

ε ln P[Zε ∈ FN,j ]
)

≤ max
j=1,...,N

(
−M +

2jM
N

+ sup
x∈FN,j

[−I(x)]
)

≤ max
j=1,...,N

(
−M +

2jM
N

+ sup
x∈FN,j

[ϕ(x)− I(x)]− inf
x∈FN,j

ϕ(x)
)

≤ sup
x∈X

[ϕ(x)− I(x)] +
2M
N

.

By sending N to infinity, we get the inequality ≤ in (2.10).
(b) To prove the reverse inequality, we fix an arbitrary point x0 ∈ X , an arbitrary δ > 0,
and we consider the open set G = {x ∈ X : ϕ(x) > ϕ(x0) − δ}. Then, we have from the
large deviations lower bound on (Zε),

lim inf
ε→0

ε ln E
[
eϕ(Zε)/ε

]
≥ lim inf

ε→0
ε ln E

[
eϕ(Zε)/ε1Zε∈G

]
≥ ϕ(x0)− δ + lim inf

ε→0
ε ln P[Zε ∈ G]

≥ ϕ(x0)− δ − inf
x∈G

I(x)

≥ ϕ(x0)− I(x0)− δ.

Since x0 ∈ X and δ > 0 are arbitrary, we get the required result. 2

Remark 2.4 The relation (2.10) has the following interpretation. By writing formally the
LDP for (Zε) with rate function I as P[Zε ∈ dx] ' e−I(x)/εdx, we can write

E
[
eϕ(Zε)/ε

]
=
∫
eϕ(x)/εP[Zε ∈ dx] '

∫
e(ϕ(x)−I(x))/εdx

' C exp
(supx∈X (ϕ(x)− I(x))

ε

)
.

As in Laplace’s method, Varadhan’s formula states that to exponential order, the main
contribution to the integral is due to the largest value of the exponent.

When (2.10) holds, we say that the sequence (Zε) satisfies a Laplace principle on X
with rate function I. Hence, Theorem 2.3 means that the large deviation principle implies
the Laplace principle. The next result proves the converse.
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Theorem 2.4 The Laplace principle implies the large deviation principle with the same
good rate function. More precisely, if I is a good rate function on X and the limit

lim
ε→0

ε ln E
[
eϕ(Zε)/ε

]
= sup

x∈X

[
ϕ(x)− I(x)

]
is valid for all bounded continuous functions ϕ, then (Zε) satisfies a large deviation principle
on X with rate function I.

Proof. (a) We first prove the large deviation upper bound. Given a closed set F of X , we
define the nonpositive function: ψ(x) = 0 if x ∈ F , and ∞ otherwise. Let d(x, F ) denote
the distance from x to F , and for n ∈ N , define

ϕn(x) = n(d(x, F ) ∧ 1).

Then, ϕn is a bounded continuous function and ϕn ↗ ψ as n goes to infinity. Hence,

ε ln P[Zε ∈ F ] = ε ln E[exp(−ψ(Zε)/ε)] ≤ ε ln E[exp(−ϕn(Zε)/ε)],

and so from the Laplace principle

lim sup
ε→0

ε ln P[Zε ∈ F ] ≤ lim sup
ε→0

ε ln E[exp(−ϕn(Zε)/ε)]

= sup
x∈X

[−ϕn(x)− I(x)] = − inf
x∈X

[ϕn(x) + I(x)].

The proof of the large deviation upper bound is then completed once we show that

lim
n→∞

inf
x∈X

[ϕn(x) + I(x)] = inf
x∈F

I(x),

and this is left as an exercice to the reader.
(b) We now consider the large deviation lower bound. Let G be an open set in X . If IG =
∞, there is nothing to prove, so we may assume that IG < ∞. Let x be an arbitrary point
in G. We can choose a real number M > I(x), and δ > 0 such that B(x, δ) ⊂ G. Define
the function

ϕ(y) = M
(d(x, y)

δ
∧ 1
)
,

and observe that ϕ is bounded, continuous, nonnegative, and satisfies: ϕ(x) = 0, ϕ(y) =
M for y /∈ B(x, δ). We then have

E[exp(−ϕ(Zε)/ε)] ≤ e−M/εP[Zε /∈ B(x, δ)] + P[Zε ∈ B(x, δ)]

≤ e−M/ε + P[Zε ∈ B(x, δ)],

and so

max
(

lim inf
ε→0

ε ln P[Zε ∈ B(x, δ)],−M
)
≥ lim inf

ε→0
ε ln E[exp(−ϕ(Zε)/ε)]

= sup
y∈X

[−ϕ(y)− I(y)]

≥ −I(x).

13



Since −M < −I(x), and B(x, δ) ⊂ G, it follows that

lim inf
ε→0

ε ln P[Zε ∈ G] ≥ lim inf
ε→0

ε ln P[Zε ∈ B(x, δ)] ≥ −I(x),

and thus

lim inf
ε→0

ε ln P[Zε ∈ G] ≥ − inf
x∈G

I(x) = −IG,

which ends the proof. 2

We next show how one can evaluate expectations arising in Laplace principles, which
can then be used to derive the large deviation principle.

2.4 Relative entropy and Donsker-Varadhan formula

The relative entropy plays a key role in the determination of the rate function. We are
given a topological space S, and we denote by P(S) the set of probability measures on S
equipped with its Borel σ field.

For ν ∈ P(S), the relative entropy R(.|ν) is a mapping from P(S) into R̄, defined by

R(µ|ν) =
∫
S

(
ln
dµ

dν

)
dµ =

∫
S

dµ

dν

(
ln
dµ

dν

)
dν,

whenever µ ∈ P(S) is absolutely continuous with respect to ν, and we set R(µ|ν) = ∞
otherwise. By observing that s ln s ≥ s− 1 with equality if and only if s = 1, we see that
R(µ|ν) ≥ 0, and R(µ|ν) = 0 if and only if µ = ν.

The relative entropy arises in the expectation in the Laplace principle via the following
variational formula.

Proposition 2.1 Let ϕ be a bounded measurable function on S and ν a probability measure
on S. Then,

ln
∫
S
eϕdν = sup

µ∈P(S)

[ ∫
S
ϕdµ−R(µ|ν)

]
, (2.11)

and the supremum is attained uniquely by the probability measure µ0 defined by

dµ0

dν
=

eϕ∫
S e

ϕdν
.

Proof. In the supremum in (2.11), we may restrict to µ ∈ P(S) with finite relative entropy:
R(µ|ν) < ∞. If R(µ|ν) < ∞, then µ is absolutely continuous with respect to ν, and since
ν is equivalent to µ0, µ is also absolutely continuous with respect to µ0. Thus,∫

S
ϕdµ−R(µ|ν) =

∫
S
ϕdµ−

∫
S

(
ln
dµ

dν

)
dµ

=
∫
S
ϕdµ−

∫
S

(
ln

dµ

dµ0

)
dµ−

∫
S

(
ln
dµ0

dν

)
dµ

= ln
∫
S
eϕdν −R(µ|µ0).
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We conclude by using the fact that R(µ|µ0) ≥ 0 and R(µ|µ0) = 0 if and only if µ = µ0. 2

The dual formula to the variational formula (2.11) is known as the Donsker-Varadhan
variational formula. We denote by B(S) the set of bounded measurable functions on S.

Proposition 2.2 (Donsker-Varadhan variational formula)
For all µ, ν ∈ P(S), we have

R(µ|ν) = sup
ϕ∈B(S)

[ ∫
S
ϕdµ− ln

∫
S
eϕdν

]
(2.12)

Proof. We denote by H(µ, ν) the r.h.s. term in (2.12). By taking the zero function on S,
we observe that H(µ, ν) ≥ 0. From (2.11), we have for any ϕ ∈ B(S):

R(µ|ν) ≥
∫
S
ϕdµ− ln

∫
S
eϕdν,

and so by taking the supremum over ϕ: R(µ|ν) ≥ H(µ, ν). To prove the converse inequality,
we may assume w.l.o.g. that H(µ, ν) < ∞. We first show that under this condition µ is
absolutely continuous with respect to ν. Let A be a Borel set for which ν(A) = 0. Consider
for any n > 0, the function ϕn = n1A ∈ B(S) so that by definition of H:

∞ > H(µ, ν) ≥
∫
S
ϕndµ− ln

∫
S
eϕndν = nµ(A).

Taking n to infinity, we get µ(A) = 0, and thus µ � ν. We define f = dµ/dν the Radon-
Nikodym derivative of µ with respect to ν. If f is uniformly positive and bounded, then ϕ
= ln f lies in B(S), and we get by definition of H:

H(µ, ν) ≥
∫
S
ϕdµ− ln

∫
S
eϕdν =

∫
S

ln
dµ

dν
dµ = R(µ|ν),

which is the desired inequality. If f is uniformly positive but not bounded, we set fn =
f ∧ n, ϕn = ln fn ∈ B(S), and use the inequality H(µ|ν) ≥

∫
S ϕndµ − ln

∫
S e

ϕndν. By
sending n to infinity and using the monotone convergence theorem, we get the required
inequality. In the general case, we define for ε ∈ [0, 1]: µε = (1 − ε)µ + εν, fε = dµε

dν =
(1 − ε)f + ε. Since fε is uniformy positive for ε > 0, we have R(µε|ν) ≤ H(µε, ν). The
proof is completed by showing that

lim
ε→0

R(µε|ν) = R(µ|ν), and lim
ε→0

H(µε, ν) = H(µ, ν).

This is achieved by using convexity arguments, and we refer to [13] for the details. 2

The expression (2.12) of the relative entropy is useful, in particular, to show that for
fixed ν ∈ P(S), the function R(.|ν) is a good rate function.

2.5 Sanov’s theorem

Sanov’s theorem concerns large deviations associated with the empirical measure of i.i.d.
random variables. In this paragraph, we show how one can derive this large deviation result
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by means of the Laplace principle. Let (Xn) be a sequence of i.i.d. random variables valued
in some Polish space S, and with common probability distribution ρ. We introduce the
corresponding sequence (Ln) of empirical measures valued in P(S) by:

Ln =
1
n

n−1∑
j=0

δXj ,

where δx is the Dirac measure in x ∈ S. The law of large numbers implies essentially the
weak convergence of Ln to ρ. The next stage is Sanov’s theorem, which states a large
deviation principle for Ln.

Theorem 2.5 (Sanov)
The sequence of empirical measures (Ln)n satisfies a large deviation principle with good
rate function the relative entropy R(.|ρ).

The purpose of this paragraph is sketch the arguments for deriving Sanov’s theorem
by using the Laplace principle. This entails calculating the asymptotic behavior of the
following expectations:

V n :=
1
n

ln E[exp(nϕ(Ln))], (2.13)

where ϕ is any bounded continuous function mapping P(S) into R. The main issue is
to obtain a representation in the form (2.10), and a key step is to express V n as the gain
function of an associated stochastic control problem by using the variational formula (2.11).

In the sequel, ϕ is fixed. We introduce a sequence of random subprobability measures
related to the empirical measures as follows. For t ∈ [0, 1], we denote Mt(S) the set of
measures on S with total mass equal to t. Fix n ∈ N∗, and for i = 0, . . . , n− 1, we define
Ln0 = 0, and

Lni+1 = Lni +
1
n
δXi ,

so that Lnn equals the empirical measure Ln, and Lni is valued in Mi/n(S). We also intro-
duce, for each i = 0, . . . , n, and µ ∈ Mi/n(S), the function

V n(i, µ) =
1
n

ln Ei,µ[exp(nϕ(Lnn))],

where Ei,µ denotes the expectation conditioned on Lni = µ. Thus, V n(0, 0) = V n defined
in (2.13), and V n(n, µ) = ϕ(µ). In order to obtain a representation formula for V n, we
first derive a recursive equation relating V n(i, .) and V n(i + 1, .) that we interpret as the
dynamic programmming equation of a stochastic control problem.

Recalling that the random variables Xi are i.i.d. with common distribution ρ, we
see that the random measures {Lni , i = 0, . . . , n} form a Markov chain on state spaces
{Mi/n(S), i = 0, . . . , n} with probability transition:

P[Lni+1 ∈ A|Lni = µ] = P[µ+
1
n
δXi ∈ A] =

∫
S

1A(µ+
1
n
δy)ρ(dy).
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We then obtain by the law of iterated conditional expectations and Markov property:

V n(i, µ) =
1
n

ln Ei,µ
[
Ei+1,Lni+1

[exp(nϕ(Lnn))]
]

=
1
n

ln Ei,µ
[

exp(nV n(i+ 1, Lni+1))
]

=
1
n

ln
∫
S

exp
[
nV n(i+ 1, µ+

1
n
δy)
]
ρ(dy).

By applying the variational formula (2.11), we obtain:

V n(i, µ) = sup
ν∈P(S)

[ ∫
S
V n(i+ 1, µ+

1
n
δy)ν(dy)− 1

n
R(ν|ρ)

]
(2.14)

The relation (2.14) is the dynamic programming equation for the following stochastic control
problem. The controlled process is a Markov chain {L̄ni , i = 0, . . . , n} starting from L̄n0 =
0, with controlled probability transitions:

P[L̄ni+1 ∈ A|L̄ni = µ] =
∫
S

1A(µ+
1
n
δy)νi(dy),

where {νi, i = 0, . . . , n} is the control process valued in P(S), in feedback type, i.e. for each
i, the decision νi depends on L̄ni . The running gain is −1/nR(ν|ρ), and the terminal gain
is ϕ. We deduce that

V n = Vn(0, 0) = sup
(νi)

E
[
ϕ(L̄nn)− 1

n

n−1∑
i=0

R(νi|ρ)
]
. (2.15)

Fix some arbitrary ν ∈ P(S), and consider the constant control νi = ν. With this
choice, L̄nn is the empirical measure of i.i.d. random variables having common distribution
ν, and the representation (2.15) yields

V n ≥ E[ϕ(L̄nn)−R(ν|ρ)].

Moreover, since L̄nn converges weakly to ν, we have by the dominated convergence theorem:

lim
n→∞

E[ϕ(L̄nn)] = ϕ(ν).

Since ν is arbitrary in P(S), we deduce that

lim inf
n→∞

V n ≥ sup
ν∈P(S)

[ϕ(ν)−R(ν|ρ)].

The corresponding lower-bound requires more technical details (see the details in [13]), and
we get finally

lim
n→∞

V n = sup
ν∈P(S)

[ϕ(ν)−R(ν|ρ)].

This implies that Ln satisfies the Laplace principle, and thus the large deviation principle
with the good rate function R(.|ρ) on P(S).

Remark 2.5 There are extensions of Sanov’s theorem on LDP for empirical measure of
Markov chain and occupation times of continuous-time Markov processes. The main refer-
ences are the seminal works by Donsker and Varadhan.
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2.6 Sample path large deviation results

In many problems, the interest is in rare events that depend on random process, and the
corresponding asymptotics probabilities, usually called sample path large deviations, were
developed by Freidlin-Wentzell and Donsker-Varadhan.

The first example is known as Schilder’s theorem, and concerns large deviations for
the process Zε =

√
εW , as ε goes to zero, where W = (Wt)t∈[0,T ] is a Brownian motion

in Rd. Denote by C([0, T ]) the space of continuous functions on [0, T ], and H([0, T ])
the Cameron-Martin space consisting of absolutely continuous functions h, with square-
integrable derivative ḣ.

Theorem 2.6 (Schilder)
(
√
εW )ε satisfies a large deviation principle on C([0, T ]) with rate function, also called

action functional:

I(h) =

{
1
2

∫ T
0 |ḣ(t)|2dt, if h ∈ H0([0, T ]) := {h ∈ H([0, T ]) : h(0) = 0},

∞, otherwise

Let us show the lower bound of this LDP. Consider G a nonempty open set of C([0, T ]),
h ∈ G, and δ > 0 s.t. B(h, δ) ⊂ G. We wnat to prove that

lim inf
ε→0

ε ln P[
√
εW ∈ B(h, δ)] ≥ −I(h).

For h /∈ H0([0, T ]), this inequality is trivial since I(h) = ∞. Suppose now h ∈ H0([0, T ]),
and consider the probability measure:

dQh

dP
= exp

(∫ T

0

ḣ(t)√
ε
dWt −

1
2ε

∫ T

0
|ḣ(t)|2dt

)
,

so that by Cameron-Martin theorem, W h := W − h√
ε

is a Brownian motion under Qh.
Then, we have

P[
√
εW ∈ B(h, δ)] = P[|W h| < δ√

ε
]

= EQh
[

exp
(
−
∫ T

0

ḣ(t)√
ε
dW h

t −
1
2ε

∫ T

0
|ḣ(t)|2dt

)
1|Wh|< δ√

ε

]

(W h Qh-BM ) = E

[
exp

(
−
∫ T

0

ḣ(t)√
ε
dWt −

1
2ε

∫ T

0
|ḣ(t)|2dt

)
1|W |< δ√

ε

]

(W ∼ −W ) = E

[
exp

(
+
∫ T

0

ḣ(t)√
ε
dWt −

1
2ε

∫ T

0
|ḣ(t)|2dt

)
1|W |< δ√

ε

]

= E

[
exp(− 1

2ε

∫ T

0
|ḣ(t)|2dt) cosh(

∫ T

0

ḣ(t)√
ε
dWt)1|W |< δ√

ε

]

≥ exp(− 1
2ε

∫ T

0
|ḣ(t)|2dt) P[|W | < δ√

ε
].
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This implies

ε ln P[
√
εW ∈ B(h, δ)] ≥ −I(h) + ε ln P[|W | < δ√

ε
],

and thus the required lower bound.

One can extend Schilder’s result to the case of diffusion with small noise parameter:

Xε
t = x+

∫ t

0
b(Xε

s )ds+
√
ε

∫ t

0
σ(Xε

s )dWs, 0 ≤ t ≤ T,

where b and σ are Lipschitz, and bounded. By using contraction principle for LDP, we
derive that (Xε)ε satisfies a LDP in C([0, T ]) with the good rate function

Ix(h) = inf
{f∈H0([0,T ]):h(t)=x+

R t
0 b(h(s))ds+

R t
0 σ(h(s))ḟ(s)ds}

1
2

∫ T

0
|ḟ(t)|2dt.

When σ is a square invertible matrix, the preceding formula for the rate function simplifies
to

Ix(h) =

{
1
2

∫ T
0 |ḣ(t)− b(h(t))|2(σσ′)−1(h(t))dt, if h ∈ Hx([0, T ])

∞, otherwise

where Hx([0, T ]) := {h ∈ H([0, T ]) : h(0) = x}. We sketch the proof in the case σ = Id,
and w.l.o.g. for x = 0. The transformation

√
εW → Xε is given by the deterministic map

F : C([0, T ]) → C([0, T ]) defined by F (f) = h, where h is the solution to

h(t) = F (f)(t) =
∫ t

0
b(h(s))ds+ f(t), t ∈ [0, T ].

One easily check from the Lipschiz condition on b, and Gronwall lemma that the map F is
continuous on C([0, T ]) so that the contraction principle is applicable, and we obtain that
(Xε)ε satisfies a LDP with good rate function

I(h) = inf
{f∈H0([0,T ]),h=F (f)}

1
2

∫ T

0
|ḟ(t)|2dt.

Moreover, observe that for f ∈ H0([0, T ]), h = F (f) is differentiable a.e. with

ḣ(t) = b(h(t)) + ḟ(t), h(0) = 0,

from which we derive the simple expression of the rate function

I(h) =
1
2

∫ T

0
|ḣ(t)− b(h(t))|2dt.

Another important application of Freidlin-Wentzell theory deals with the problem of
diffusion exit from a domain, and occurs naturally in finance, see Section 3. We briefly
summarize these results. Let ε > 0 a (small) positive parameter and consider the stochastic
differential equation in Rd on some interval [0, T ],

dXε
s = bε(s,Xε

s )ds+
√
εσ(s,Xε

s )dWs, (2.16)
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and suppose that there exists a Lipschitz function b on [0, T ]× Rd s.t.

lim
ε→0

bε = b,

uniformly on compact sets. Given an open set Γ of Rd, we consider the exit time from Γ,

τ ε
t,x

= inf
{
s ≥ t : Xε,t,x

s /∈ Γ
}
,

and the corresponding exit probability

vε(t, x) = P[τ ε
t,x
≤ T ], (t, x) ∈ [0, T ]× Rd.

Here Xε,t,x denotes the solution to (2.16) starting from x at time t. It is well-known that
the process Xε,t,x converge to X0,t,x the solution to the ordinary differential equation

dX0
s = b(s,X0

s )ds, X0
t = x.

In order to ensure that vε goes to zero, we assume that for all t ∈ [0, T ],

(H) x ∈ Γ =⇒ X0,t,x
s ∈ Γ, ∀s ∈ [t, T ].

Indeed, under (H), the system (2.16) tends, when ε is small, to stay inside Γ, so that the
event {τ ε

t,x
≤ T} is rare. The large deviations asymptotics of vε(t, x), when ε goes to zero,

was initiated by Varadhan and Freidlin-Wentzell by probabilistic arguments. An alternative
approach, introduced by Fleming, connects this theory with optimal control and Bellman
equation, and is developed within the theory of viscosity solutions, see e.g. [6]. We sketch
here this approach. It is well-known that the function vε satisfies the linear PDE

∂vε
∂t

+ bε(t, x).Dxvε +
ε

2
tr(σσ′(t, x)D2

xvε) = 0, (t, x) ∈ [0, T )× Γ (2.17)

together with the boundary conditions

vε(t, x) = 1, (t, x) ∈ [0, T )× ∂Γ (2.18)

vε(T, x) = 0, x ∈ Γ. (2.19)

Here ∂Γ is the boundary of Γ. We now make the logarithm transformation

Vε = −ε ln vε.

Then, after some straightforward derivation, (2.17) becomes the nonlinear PDE

−∂Vε
∂t
− bε(t, x).DxVε −

ε

2
tr(σσ′(t, x)D2

xVε)

+
1
2

(DxVε)′σσ′(t, x)DxVε = 0, (t, x) ∈ [0, T )× Γ, (2.20)

and the boundary data (2.18)-(2.19) become

Vε(t, x) = 0, (t, x) ∈ [0, T )× ∂Γ (2.21)

Vε(T, x) = ∞, x ∈ Γ. (2.22)
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At the limit ε = 0, the PDE (2.20) becomes a first-order PDE

−∂V0

∂t
− b(t, x).DxV0 +

1
2

(DxV0)′σσ′(t, x)DxV0 = 0, (t, x) ∈ [0, T )× Γ, (2.23)

with the boundary data (2.21)-(2.22). By PDE-viscosity solutions methods and comparison
results, we can prove (see e.g. [6] or [19]) that Vε converges uniformly on compact subsets of
[0, T )×Γ, as ε goes to zero, to V0 the unique viscosity solution to (2.23) with the boundary
data (2.21)-(2.22). Moreover, V0 has a representation in terms of control problem. Consider
the Hamiltonian function

H(t, x, p) = −b(t, x).p+
1
2
p′σσ′(t, x)p, (t, x, p) ∈ [0, T ]× Γ× Rd,

which is quadratic and in particular convex in p. Then, using the Legendre transform, we
may rewrite

H(t, x, p) = sup
q∈Rd

[
− q.p−H∗(t, x, q)

]
,

where

H∗(t, x, q) = sup
p∈Rd

[
− p.q −H(t, x, p)

]
=

1
2

(q − b(t, x))′(σσ′(t, x))−1(q − b(t, x)), (t, x, q) ∈ [0, T ]× Γ× Rd.

Hence, the PDE (2.23) is rewritten as

∂V0

∂t
+ inf
q∈Rd

[
q.DxV0 +H∗(t, x, q)

]
= 0, (t, x) ∈ [0, T )× Γ,

which, together with the boundary data (2.21)-(2.22), is associated to the value function
for the following calculus of variations problem:

V0(t, x) = inf
x(.)∈A(t,x)

∫ T

t
H∗(u, x(u), ẋ(u))du, (t, x) ∈ [0, T )× Γ,

= inf
x(.)∈A(t,x)

∫ T

t

1
2

(ẋ(u)− b(u, x(u)))′(σσ′(u, x(u)))−1(ẋ(u)− b(u, x(u)))du

where

A(t, x) =
{
x(.) ∈ H([0, T ]) : x(t) = x and τ(x) ≤ T

}
,

Here τ(x) is the exit time of x(.) from Γ. The large deviations result is then stated as

lim
ε→0

ε ln vε(t, x) = −V0(t, x), (2.24)

and the above limit holds uniformly on compact subsets of [0, T ) × Γ. Notice that for t
= 0, and T = 1, the quantity d(x, ∂Γ) =

√
2V0(0, x) is the distance between x and ∂Γ in

the Riemannian metric defined by (σσ′)−1. A more precise result may be obtained, which
allows to remove the above log estimate. This type of result is developed in [17], and is
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called sharp large deviations estimate. It states asymptotic expansion (in ε) of the exit
probability for points (t, x) belonging to a set N of [0, T ′]×Γ for some T ′ < T , open in the
relative topology, and s.t. V0 ∈ C∞(N). Then, under the condition that

bε = b+ εb1 + 0(ε2),

one has

vε(t, x) = exp
(
− V0(t, x)

ε
− w(t, x)

)
(1 +O(ε)),

uniformly on compact sets of N , where w is solution to the PDE problem

−∂W
∂t
− (b− σσ′DxV0).Dxw =

1
2

tr(σσ′D2
xV0) + b1.DxV0 in N

w(t, x) = 0 on
(

[0, T )× ∂Γ
)
∪ N̄ .

The function w may be represented as

w(t, x) =
∫ ρ

t

(1
2

tr(σσ′D2
xV0) + b1.DxV0

)
(s, ξ(s))ds,

where ξ is the solution to

ξ̇(s) = (b− σσ′DxV0)(s, ξ(s)), ξ(t) = x,

and ρ is the exit time (after t) of (s, ξ(s)) from N .

3 Importance sampling and large deviations approximation

in option pricing

In this section, we show how to use large deviations approximation via importance sampling
for Monte-carlo computation of expectations arising in option pricing. In the context of
continuous-time models, we are interested in the computation of

Ig = E
[
g(St, 0 ≤ t ≤ T )

]
,

where S is the underlying asset price, and g is the payoff of the option, eventually path-
dependent, i.e. depending on the path process St, 0 ≤ t ≤ T . The Monte-Carlo approxima-
tion technique consists in simulating N independent sample paths (Sit)0≤t≤T , i = 1, . . . , N ,
in the distribution of (St)0≤t≤T , and approximating the required expectation by the sample
mean estimator:

INg =
1
N

N∑
i=1

g(Si).

The consistency of this estimator is ensured by the law of large numbers, while the error
approximation is given by the variance of this estimator from the central limit theorem:
the lower is the variance of g(S), the better is the approximation for a given number N of
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simulations. As already mentioned in the introduction, the basic principle of importance
sampling is to reduce variance by changing probability measure from which paths are gen-
erated. Here, the idea is to change the distribution of the price process to be simulated in
order to take into account the specificities of the payoff function g, and to drive the process
to the region of high contribution to the required expectation. We focus in this section in
the importance sampling technique within the context of diffusion models, and then show
how to obtain an optimal change of measure by a large deviation approximation of the
required expectation.

3.1 Importance sampling for diffusions via Girsanov’s theorem

We briefly describe the importance sampling variance reduction technique for diffusions.
Let X be a d-dimensional diffusion process governed by

dXs = b(Xs)ds+ Σ(Xs)dWs, (3.1)

where (Wt)t≥0 is a n-dimensional Brownian motion on a filtered probability space (Ω,F ,F =
(Ft)t≥0,P), and the Borel functions b, Σ satisfy the usual Lipschitz condition ensuring the
existence of a strong solution to the s.d.e. (3.1). We denote by Xt,x

s the solution to (3.1)
starting fom x at time t, and we define the function:

v(t, x) = E
[
g(Xt,x

s , t ≤ s ≤ T )
]
, (t, x) ∈ [0, T ]× Rd.

Let φ = (φt)0≤t≤T be an Rd-valued adapted process such that the process

Mt = exp
(
−
∫ t

0
φ′udWu −

1
2

∫ t

0
|φu|2du

)
, 0 ≤ t ≤ T,

is a martingale, i.e. E[MT ] = 1. This is ensured for instance under the Novikov criterion:
E
[

exp
(

1
2

∫ T
0 |φu|

2du
)]
<∞. In this case, one can define a probability measure Q equivalent

to P on (Ω,FT ) by:

dQ
dP

= MT .

Moreover, by Girsanov’s theorem, the process Ŵt = Wt+
∫ t

0 φudu, 0 ≤ t ≤ T , is a Brownian
motion under Q, and the dynamics of X under Q is given by

dXs =
(
b(Xs)− Σ(Xs)φs

)
ds+ Σ(Xs)dŴs. (3.2)

From Bayes formula, the expectation of interest can be written as

v(t, x) = EQ
[
g(Xt,x

s , t ≤ s ≤ T )LT
]
, (3.3)

where L is the Q-martingale

Lt =
1
Mt

= exp
(∫ t

0
φ′udŴu −

1
2

∫ t

0
|φu|2du

)
, 0 ≤ t ≤ T. (3.4)
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The expression (3.3) suggests, for any choice of φ, an alternative Monte-Carlo estimator for
v(t, x) with

INg,φ(t, x) =
1
N

N∑
i=1

g(Xi,t,x)LiT ,

by simulating N independent sample paths (Xi,t,x) and LiT of (Xt,x) and LT under Q given
by (3.2)-(3.4). Hence, the change of probability measure through the choice of φ leads to a
modification of the drift process in the simulation of X. The variance reduction technique
consists in determining a process φ, which induces a smaller variance for the corresponding
estimator Ig,φ than the initial one Ig,0. The two next paragraphs present two approaches
leading to the construction of such processes φ. In the first approach developed in [25], the
process φ is stochastic, and requires an approximation of the expectation of interest. In the
second approach due to [26], the process φ is deterministic and derived through a simple
optimization problem. Both approaches rely on asymptotic results from the theory of large
deviations.

3.2 Option pricing approximation with a Freidlin-Wentzell large devia-

tion principle

We are looking for a stochastic process φ, which allows to reduce (possibly to zero!) the
variance of the corresponding estimator. The heuristics for achieving this goal is based
on the following argument. Suppose for the moment that the payoff g depends only on
the terminal value XT . Then, by applying Itô’s formula to the Q-martingale v(s,Xt,x

s )Ls
between s = t and s = T , we obtain:

g(Xt,x
T )LT = v(t, x)Lt +

∫ T

t
Ls
(
Dxv(s,Xt,x

s )′Σ(Xt,x
s ) + v(x,Xt,x

s )φ′s
)
dŴs.

Hence, the variance of INg,φ(t, x) is given by

V arQ(INg,φ(t, x)) =
1
N

EQ
[ ∫ T

t
L2
s

∣∣Dxv(s,Xt,x
s )′Σ(Xt,x

s ) + v(x,Xt,x
s )φ′s

∣∣2ds].
The choice of the process φ is motivated by the following remark. If the function v were
known, then one could vanish the variance by choosing

φs = φ∗s = − 1
v(s,Xt,x

s )
Σ′(Xt,x

s )Dxv(s,Xt,x
s ), t ≤ s ≤ T. (3.5)

Of course, the function v is unknown (this is precisely what we want to compute), but this
suggests to use a process φ from the above formula with an approximation of the function
v. We may then reasonably hope to reduce the variance, and also to use such a method
for more general payoff functions, possibly path-dependent. We shall use a large deviations
approximation for the function v.

The basic idea for the use of large deviations approximation to the expectation function
v is the following. Suppose the option of interest, characterized by its payoff function g,
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has a low probability of exercice, e.g. it is deeply out the money. Then, a large proportion
of simulated paths end up out of the exercice domain, giving no contribution to the Monte-
carlo estimator but increasing the variance. In order to reduce the variance, it is interesting
to change of drift in the simulation of price process to make the domain exercice more
likely. This is achieved with a large deviations approximation of the process of interest in
the asymptotics of small diffusion term: such a result is known in the literature as Freidlin-
Wentzell sample path large deviations principle. Equivalently, by time-scaling, this amounts
to large deviation approximation of the process in small time, studied by Varadhan.

To illustrate our purpose, let us consider the case of an up-in bond, i.e. an option that
pays one unit of numéraire iff the underlying asset reached a given up-barrier K. Within a
stochastic volatility model X = (S, Y ) as in (3.1) and given by:

dSt = σ(Yt)StdW 1
t (3.6)

dYt = η(Yt)dt+ γ(Yt)dW 2
t , d < W1,W2 >t = ρdt, (3.7)

its price is then given by

v(t, x) = E
[
1maxt≤u≤T S

t,x
u ≥K

]
= P[τt,x ≤ T ], t ∈ [0, T ], x = (s, y) ∈ (0,∞)× R,

where

τt,x = inf
{
u ≥ t : Xt,x

u /∈ Γ
}
, Γ = (0,K)× R.

The event {maxt≤u≤T S
t,x
u ≥ K} = {τt,x ≤ T} is rare when x = (s, y) ∈ Γ, i.e. s < K

(out the money option) and the time to maturity T − t is small. The large deviations
asymptotics for the exit probability v(t, x) in small time to maturity T − t is provided by
the Freidlin-Wentzell and Varadhan theories. Indeed, we see from the time-homogeneity of
the coefficients of the diffusion and by time-scaling that we may write v(t, x) = wT−t(0, x),
where for ε > 0, wε is the function defined on [0, 1]× (0,∞)× R by

wε(t, x) = P[τ ε
t,x
≤ 1],

and Xε,t,x is the solution to

dXε
s = εb(Xε

s )ds+
√
εΣ(Xε

s )dWs, Xε
t = x.

and τ ε
t,x

= inf
{
s ≥ t : Xε,t,x

s /∈ Γ
}

. From the large deviations result (2.24) stated in
paragraph 2.3, we have:

lim
t↗T
−(T − t) ln v(t, x) = V0(0, x),

where

V0(t, x) = inf
x(.)∈A(t,x)

∫ 1

t

1
2
ẋ(u)′M(x(u))ẋ(u)du, (t, x) ∈ [0, 1)× Γ,

Σ(x) is the diffusion matrix of X = (S, Y ), M(x) = (ΣΣ′(x))−1, and

A(t, x) =
{
x(.) ∈ H([0, 1]) : x(t) = x and τ(x) ≤ 1

}
.
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We also have another interpretation of the positive function V0 in terms of Riema-
nian distance on Rd associated to the metric M(x) = (ΣΣ′(x))−1. By denoting L0(x) =√

2V0(0, x), one can prove (see [38]) that L0 is the unique viscosity solution to the eikonal
equation

(DxL0)′ΣΣ′(x)DxL0 = 1, x ∈ Γ

L0(x) = 0, x ∈ ∂Γ

and that it may be represented as

L0(x) = inf
z∈∂Γ

L0(x, z), x ∈ Γ, (3.8)

where

L0(x, z) = inf
x(.)∈A(x,z)

∫ 1

0

√
ẋ(u)′M(x(u))ẋ(u)du,

and A(x, z) =
{
x(.) ∈ H([0, 1]) : x(0) = x and x(1) = z

}
. Hence, the function L0 can

be computed either by the numerical resolution of the eikonal equation or by using the
representation (3.8). L0(x) is interpreted as the minimal length (according to the metric
M) of the path x(.) allowing to reach the boundary ∂Γ from x. From the above large
deviations result, which is written as

ln v(t, x) ' − L2
0(x)

2(T − t)
, as T − t→ 0,

and the expression (3.5) for the optimal theoretical φ∗, we use a change of probability
measure with

φ(t, x) =
L0(x)
T − t

Σ′(x)DxL0(x).

Such a process φ may also appear interesting to use in a more general framework than
up-in bond: one can use it for computing any option whose exercice domain looks similar
to the up and in bond. We also expect that the variance reduction is more significant as
the exercice probability is low, i.e. for deep out the money options. In the particular case
of the Black-Scholes model, i.e. σ(x) = σs, we have

L0(x) =
1
σ

∣∣ ln ( s
K

)∣∣,
and so

φ(t, x) =
1

σ(T − t)
ln(

s

K

)
, s < K.

3.3 Change of drift via Varadhan-Laplace principle

We describe here a method due to [26], which, in contrast with the above approach, does
not require the knowledge of the option price, and restricts to deterministic change of drifts.
The original approach of [26] was developed in a discrete-time setting, and extended to a
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continuous-time context by [31]. In theses lectures, we follow the continuous-time diffusion
setting of paragraph 3.1. It is convenient to identify the option payoff with a nonnegative
functional G(W ) of the Brownian motion W = (Wt)0≤t≤T on the set C([0, T ]) of continuous
functions on [0, T ], and to define F = lnG valued in R ∪ {−∞}. For example, in the case
of the Black-Scholes model for the stock price S, with interest rate r and volatility σ, the
payoff of an arithmetic Asian option is ( 1

T

∫ T
0 Stdt−K)+, corresponding to a functional:

G(w) =
( 1
T

∫ T

0
S0 exp

(
σwt + (r − σ2/2)t

)
−K

)
+
.

We shall restrict to deterministic changes of drifts in Girsanov’s theorem. We then consider
the Cameron-Martin space H0([0, T ]) of absolutely continuous functions, vanishing in zero,
with square integrable derivative. Any h ∈ H0([0, T ]) induces an equivalent probability
measure Qh via its Radon-Nikodym density:

dQh

dP
= exp

(∫ T

0
ḣ(t)dWt −

1
2

∫ T

0
|ḣ(t)|2dt

)
,

and Ŵ = W − h is a Brownian motion under Qh. Moreover, from Bayes formula, we
have an unbiased estimator of the option price E[G(W )] by simulating under Qh the payoff
G(W ) dP

dQh . An optimal choice of h should minimize the variance under Qh of this payoff,
or equivalently its second moment given by:

M2(h) = EQh
[(
G(W )

dP
dQh

)2]
= E

[
G(W )2 dP

dQh

]
= E

[
exp

(
2F (W )−

∫ T

0
ḣ(t)dWt +

1
2

∫ T

0
|ḣ(t)|2dt

)]
.

The above quantity is in general intractable, and we present here an approximation by
means of small-noise asymptotics:

M2
ε (h) = E

[
exp

{1
ε

(
2F (
√
εW )−

∫ T

0

√
εḣ(t)dWt +

1
2

∫ T

0
|ḣ(t)|2dt

)}]
.

Now, from Schilder’s theorem, (Zε =
√
εW )ε satisfies a LDP on C([0, T ]) with rate func-

tion I(z) = 1
2

∫ T
0 |ż(t)|

2dt for z ∈ H0([0, T ]), and ∞ otherwise. Hence, under subquadratic
growth conditions on the log payoff of the option, one can apply Varadhan’s integral prin-
ciple (see Theorem 2.3) to the function z → 2F (z) −

∫ T
0 ḣ(t).ż(t)dt + 1

2

∫ T
0 |ḣ(t)|2dt, and

get

lim
ε→0

ε lnM2
ε (µ) = sup

z∈H0([0,T ])

[
2F (z) +

1
2

∫ T

0
|ż(t)− ḣ(t)|2dt−

∫ T

0
|ż(t)|2dt

]
. (3.9)

We then say that ĥ ∈ H0([0, T ]) is an asymptotic optimal drift if it is solution to the
problem:

inf
h∈H0([0,T ])

sup
z∈H0([0,T ])

[
2F (z) +

1
2

∫ T

0
|ż(t)− ḣ(t)|2dt−

∫ T

0
|ż(t)|2dt

]
. (3.10)
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Swapping the order of optimization, this min-max problem is reduced to:

sup
h∈H0([0,T ])

[
2F (h)−

∫ T

0
|ḣ(t)|2dt

]
. (3.11)

Problem (3.11) is a standard problem of calculus of variations, which may be reduced to
the resolution of the associated Euler-Lagrange differential equation.

We report from [31] the following table, which compares the performance, in terms of
variance ratios between the risk-neutral sample and the sample with the optimal drift for
an Asian option in a Black-Scholes model. Parameter values are T = 1, r = 5%, σ = 20%,
S0 = 50, and strikes are varying. Simulations are performed with 106 paths.

Strike Price Variance ratios
50 304.0 7.59
60 28.00 26.5
70 1.063 310

The performance gap increases with the strike. This is justified by the fact that a
larger strike cause the option to become more out-the-money, and then the role of the drift
in reshaping the payoff distribution in the region of interest becomes more crucial. An
extension of this method of importance sampling by using sample path large deviations
results is considered recently in [45] for stochastic volatility models.

4 Large deviations approximation in computation of barrier

crossing probabilities and applications to default probabil-

ities in finance

In this section, we present a simulation procedure for computing the probability that a
diffusion process crosses pre-specified barriers in a given time interval [0, T ]. Let (Xt)t∈[0,T ]

be a diffusion process in Rd,

dXt = b(Xt)dt+ σ(Xt)dWt

and τ is the exit time of X from some domain Γ of Rd, eventually depending on time:

τ = inf{t ∈ [0, T ] : Xt /∈ Γ(t)},

with the usual convention that inf ∅ = ∞. Such a quantity appears typically in finance in
the computation of barrier options, for example with a knock-out option:

C0 = E
[
e−rT g(XT )1τ>T

]
, (4.12)

with Γ(t) = (−∞, U(t)) in the case of single barrier options, and Γ(t) = (L(t), U(t)), for
double barrier options. Here, L, U are real functions : [0,∞)→ (0,∞) s.t. L < U . This exit
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probability arises also naturally in structural models in credit risk modeling for computing
the default probabilities:

P[τ < T ], (4.13)

and Γ is for example a multivariate barrier in the form: Γ =
∏d
i=1[ci,∞), for some constants

ci, and default occurs whenever one of the components Xi of the credit index variable X
falls below some threshold ci. More generally, these default probabilities appear in the
computations of credit derivatives, e.g. credit defaut swap (CDS). The objective is to
provide an efficient estimation of τ , and then to use it for Monte-Carlo simulation of various
quantities of interest.

The direct naive approach would consist first of simulating the process X on [0, T ]
through a discrete Euler scheme of step size ε = T/n = ti+1 − ti, i = 0, . . . , n:

X̄ε
ti+1 = X̄ε

ti + b(X̄ε
ti)ε+ σ(X̄ε

ti)(Wti+1 −Wti),

and the exit time τ is approximated by the first time the discretized process reaches the
barrier:

τ̄ ε = inf
{
ti : X̄ε

ti /∈ Γ(ti)
}
.

In this procedure, one considers that the price diffusion is killed if there exists a value X̄ε
ti ,

which is out of the domain Γ(ti). Hence, such an approach is suboptimal since it does not
control the diffusion path between two successive dates ti and ti+1: the diffusion path could
have crossed the barriers and come back to the domain without being detected. In this
case, one over-estimates the exit time probability of {τ > T}, and for example, the error
C0 and C̄ε0 (the Monte-Carlo approximation of C0 with τ̄ ε) is of order

√
ε, as shown in [29],

instead of the usual order ε obtained for standard vanilla options.
In order to improve the above procedure, we need to determine the probability that

the process X crosses the barrier between discrete simulation times. We then consider the
continuous Euler scheme

X̄ε
t = X̄ε

ti + b(X̄ε
ti)(t− ti) + σ(X̄ε

ti)(Wt −Wti), ti ≤ t ≤ ti+1,

which evolves as a Brownian with drift between two time discretizations ti, ti+1 = ti + ε.
Given a simulation path of (X̄ε

ti)i, and values X̄ε
ti = xi, X̄ε

ti+1
= xi+1, we denote

pεi (xi, xi+1) = P
[
∃t ∈ [ti, ti+1] : X̄ε

t /∈ Γ(ti)
∣∣(X̄ε

ti , X̄
ε
ti+1

) = (xi, xi+1)
]
,

the exit probability of the Euler scheme conditionally on the simulated path values. The
correction simulation procedure for τ works then as follows. One of the two possibilities
occur: X̄ε

ti has crossed a boundary or it has not. In the first case, we set τ ε = ti. In
the second case, starting from the subinterval [t0, t1] and given the observed values X̄ε

t0 =
x0, X̄ε

t1 = x1, we run a bernoulli trial: with probability pε0 = pε0(x0, x1), we consider that
the diffusion is killed, and we set τ ε = t0; with probability 1 − pε0, we look at the next
subinterval [t1, t2], and repeat the above bernoulli trial, and so on.
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The effective implementation of this corrected procedure requires the calculation of pεi .
Notice that on the interval [ti, ti+1], the diffusion X̄ε conditionned to X̄ε

ti = xi, X̄ε
ti+1

=
xi+1, is a Brownian bridge: it coincides in distribution with the process

B̃i,ε
t = xi +

t

ε

(
xi+1 − xi

)
+ σ(xi)

(
Wt −

t

ε
Wε), 0 ≤ t ≤ ε,

and so by time change t → t/ε, with the process

Y i,ε
t := B̃i,ε

εt = xi + t
(
xi+1 − xi

)
+
√
εσ(xi)

(
Wt − tW1), 0 ≤ t ≤ 1.

It is known that the process Y i,ε is solution to the s.d.e.

dY i,ε
t = −Y

i,ε
t − xi+1

1− t
dt+

√
εσ(xi)dWt, 0 ≤ t < 1,

Y i,ε
0 = xi.

The probability pεi can then be expressed as

pεi (xi, xi+1) = P[τ i,ε ≤ 1], where τ i,ε = inf
{
t ≥ 0 : Y i,ε

t /∈ Γ(ti + εt)
}
. (4.14)

In the case of a half-space, i.e. single constant barrier, one has an explicit expression
for the exit probability of a Brownian bridge, see [30]. For example, if Γ(t) = (−∞, U), we
have

pεi (xi, xi+1) = exp
(
− IU (xi, xi+1)

ε

)
, with IU (xi, xi+1) =

2
σ2(xi)

(U − xi)(U − xi+1).

In the general case, we do not have analytical expressions for pεi , and one has to rely on
simulation techniques or asymptotic approximations. We shall here consider asymptotic
techniques based on large deviations and Freidlin-Wentzell theory, which state that

lim
ε→0

ε ln pεi (xi, xi+1) = −IΓ(xi, xi+1),

where IΓ(xi, xi+1) is the infimum of the functional

y(.) −→ 1
2

∫ 1

0
(ẏ(t) +

y(t)− xi+1

1− t
)′(σσ′(xi))−1(ẏ(t) +

y(t)− xi+1

1− t
)dt,

over all absolutely continuous paths y(.) on [0, 1] s.t. y(0) = xi, and there exists some t ∈
[0, 1] for which y(t) /∈ Γ(ti). This infimum is a classical problem of calculus of variations,
and is explicitly solved in the one-dimensional case. For example, in the case of two time-
dependent barriers, i.e. Γ(t) = (L(t), U(t)) for smooth barriers functions L < U , we have

IΓ(xi, xi+1) =

{
2

σ2(xi)
(U(ti)− xi)(U(ti)− xi+1) if xi + xi+1 > L(ti) + U(ti)

2
σ2(xi)

(xi − L(ti))(xi+1 − L(ti)) if xi + xi+1 < L(ti) + U(ti).

In order to remove the log estimate on pεi , we need a sharper large deviation estimate, and
this is analyzed by the results of [17] recalled in paragraph 2.3. More precisely, we have

pεi (xi, xi+1) = exp
(
− IΓ(xi, xi+1)

ε
− wΓ(xi, xi+1)

)
(1 +O(ε)),
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where wΓ(xi, xi+1) is explicited in [4] as

wΓ(xi, xi+1) =

{
2

σ2(xi)
(U(ti)− xi)U ′(ti) if xi + xi+1 > L(ti) + U(ti)

2
σ2(xi)

(xi − L(ti))L′(ti) if xi + xi+1 < L(ti) + U(ti).

The approximation of (4.12) is thus computed by Monte-Carlo simulations of

Cε0 = E
[
e−rT (X̄ε

T −K)+1τε>T
]
.

We then recover a rate of convergence of order ε for Cε0 − C0, see [29].
We give some numerical illustrations due to [4], which performed standard Monte-Carlo

method with the corrected method as described above. The results are compared with the
prices obtained by Kunitomo and Ikeda (K-I), and Geman and Yor (G-Y). The prices are
computed for barriers in the form L(t) = Aeδ1t, U(t) = Beδ2t in a Black-Scholes model.
Parameters values are S0 = 2, σ = 0.2, r = 0.02, K = 2, A = 1.5, B = 2.5.

(δ1, δ2) (-0.1,0.1) (0,0) (0.1,-0.1)
G-Y 0.0411
K-I 0.08544 0.04109 0.00916

cor- MC 0.08568 0.04104 0.00910
st-MC 0.08929 0.04413 0.001060

5 Asymptotics in stochastic volatility models

In recent years, there has been a considerable interest on various asymptotics (small-time,
large time, fast mean-reverting, extreme strike) for stochastic volatility models, see [3],
[7], [35], [9], [41], [14], [39], [22], [16], [32], [50]. In particular, large deviations provides a
powerful tool for describing the limiting behavior of implied volatilities. We recall that an
implied volatility is the volatility parameter needed in the Black-Scholes formula in order to
match a call option price, and it is a common practice to quote prices in volatility through
this transformation. In this section, we shall focus on small time asymptotics near maturity
of options.

5.1 Short maturity asymptotics for implied volatility in the Heston model

In this paragraph, we consider the small-time asymptotic behavior of the implied volatility
in the Heston stochastic volatility model. This problem was studied by several authors in
the literature, and we follow here the rigorous analysis of [22] based on the Gärtner-Ellis
theorem from large deviations theory and the exponential affine closed-form expression for
the moment generating function of the log-stock price.

On a probability space (Ω,F ,P) supporting a two-dimensional Brownian motion (W 1,W 2),
we consider the popular Heston stochastic volatility model for the log stock price Xt = lnSt
(interest rates and dividends are assumed to be null):

dXt = −1
2
Ytdt+

√
Yt(
√

1− ρ2dW 1
t + ρdW 2

t ) (5.1)

dYt = κ(θ − Yt)dt+ σ
√
YtdW

2
t , (5.2)
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with X0 = x0 ∈ R, Y0 = y0 > 0, ρ ∈ (−1, 1), κ, θ, σ > 0 with 2κθ > σ2. This last
condition ensures that the Cox-Ingersoll-Ross SDE for Y admits a unique strong solution,
which remains strictly positive.

Moment generating function. The analysis relies on the explicit calculation of the
moment generating function of X, and then evaluation its limit. Let us then define the
quantity

Γt(p) = ln E
[

exp
(
p(Xt − x0)

)]
, p ∈ R. (5.3)

By definition of X in (5.1), we have for all p ∈ R:

Γt(p) = ln E
[

exp
(
− p

2

∫ t

0
Ysds+ pρ

∫ t

0

√
YsdW

2
s + p

√
1− ρ2

∫ t

0

√
YsdW

1
s

)]
= ln E

{
exp

(
− p

2

∫ t

0
Ysds+ pρ

∫ t

0

√
YsdW

2
s

)
E
[

exp
(
p
√

1− ρ2

∫ t

0

√
YsdW

1
s

)∣∣(W 2
s )s≤t

]}
= ln E

[
exp

(
− p

2

∫ t

0
Ysds+ pρ

∫ t

0

√
YsdW

2
s +

p2(1− ρ2)
2

∫ t

0
Ysds

)]
= ln E

[
exp

(
pρ

∫ t

0

√
YsdW

2
s −

p2ρ2

2

∫ t

0
Ysds

)
exp

(p(p− 1)
2

∫ t

0
Ysds

)]
,

where we used the law of iterated conditional expectation in the second equality, and the
fact that Yt is measurable with respect to W 2. By Girsanov’s theorem, we then get

Γt(p) = ln EQ
[

exp
(p(p− 1)

2

∫ t

0
Ysds

)]
,

where under Q, the process Y satisfies the sde

dYt = (κθ − (κ− ρσp)Yt)dt+ σ
√
YtdW

2,Q
t , (5.4)

with W 2,Q a Brownian motion. We are then reduced to the calculation of Laplace transform
of CIR processes, for which we have closed-form expressions derived either by probabilistic
or PDE methods. We present here the PDE approach. Fix p ∈ R, and consider the function
defined by

F (t, y, p) = EQ
[

exp
(p(p− 1)

2

∫ t

0
Ysds

)∣∣Y0 = y
]
,

so that Γt(p) = lnF (t, y0, p). From Feynman-Kac formula, the function F is solution to
the parabolic linear Cauchy problem

∂F

∂t
=

p(p− 1)
2

yF + (κθ − (κ− ρσp)y)
∂F

∂y
+
σ2

2
y
∂2F

∂y2

F (0, y, p) = 1.
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We look for a function F in the form F (t, y, p) = exp(φ(t, p)+yψ(t, p)) for some deterministic
functions φ(., p), ψ(., p). By plugging into the PDE for F , we obtain that φ and ψ satisfy
the ordinary differential equations (ode):

∂ψ

∂t
=

p(p− 1)
2

− (κ− ρσp)ψ +
σ2

2
ψ2, ψ(0, p) = 0 (5.5)

∂φ

∂t
= κθψ, φ(0, p) = 0. (5.6)

One can solve explicitly the Riccati equation (5.5) under the condition:

δ = δ(p) := (κ− ρσp)2 − σ2p(p− 1) ≥ 0 (5.7)

Indeed, in this case, a particular solution to (5.5) is given by the constant function in time:

ψ0(p) =
κ− ρσp+

√
δ

σ2
,

and denoting by ϑ = 1/(ψ − ψ0), i.e. ψ = ψ0 + 1
ϑ , we see that the function ϑ satisfies the

first-order linear ode:
∂ϑ

∂t
+
√
δϑ+

1
2
σ2 = 0, ϑ(0, p) = − 1

ψ0(p)
.

The solution to this equation is given by

ϑ(t, p) =
1
2
σ2

√
δ

(e−
√
δt − 1)− σ2

κ− ρσp+
√
δ
e−
√
δt

We then obtain the solution to the Riccati equation (5.5) after some straightforward cal-
culations:

ψ(t, p) = ψ0(p) +
1

ϑ(t, p)
=

κ− ρσp−
√
δ

σ2

1− e−
√
δt

1− he−
√
δt

= p(p− 1)
sinh

(√
δ

2 t
)

(κ− ρσp) sinh
(√

δ
2 t
)

+
√
δ cosh

(√
δ

2 t
) ,

and

φ(t, p) =
κθ

σ2

[
(κ− ρσp−

√
δ)t− 2 ln

(1− he−
√
δt

1− h

)]
=

κθ

σ2

[
(κ− ρσp−

√
δ)t+ 2 ln

( √
δe
√
δ

2
t

(κ− ρσp) sinh
(√

δ
2 t
)

+
√
δ cosh

(√
δ

2 t
))],

where

h = h(p) :=
κ− ρσp−

√
δ

κ− ρσp+
√
δ
.

The solutions ψ, φ to these equations are defined for all t ≥ 0 such that (1−he−
√
δt)/(1−h)

> 0, i.e. for t ∈ [0, T ∗) where

T ∗ = T ∗(p) =

{
∞, if κ− ρσp ≥ 0,

1√
δ

lnh, if κ− ρσp < 0.
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When δ(p) < 0, we extend the functions φ and ψ by analytic continuation by substituting√
δ by i

√
−δ, which yields:

ψ(t, p) = p(p− 1)
sin
(√−δ

2 t
)

(κ− ρσp) sin
(√−δ

2 t
)

+
√
−δ cos

(√−δ
2 t
) , (5.8)

φ(t, p) =
κθ

σ2

[
(κ− ρσp− i

√
−δ)t

+ 2 ln
( √

−δe
i
√
−δ
2

t

(κ− ρσp) sin
(√−δ

2 t
)

+
√
−δ cos

(√−δ
2 t
))]. (5.9)

This analytic continuation holds as long as

(κ− ρσp) sin
(√−δ

2
t
)

+
√
−δ cos

(√−δ
2

t
)

> 0,

which corresponds to an explosion time

T ∗ = T ∗(p) =
2√
−δ

[
π1κ−ρσp>0 + arctan

( √−δ
ρσp− κ

)]
.

Recalling that a Laplace transform is analytic in the interior of its convex domain (when
its is not empty), we deduce that the function Γt defined in (5.3) is explicitly given by

Γt(p) =

{
φ(t, p) + y0ψ(t, p), t < T ∗(p), p ∈ R

∞, t ≥ T ∗(p), p ∈ R.

Our purpose is to derive a LDP for Xt − x0 when t goes to zero, and thus, in view of
Gärtner-Ellis theorem, we need to determine the limiting moment generating function:

Γ(p) := lim
t→0

tΓt(p/t).

We are then led to substitute p → p/t and let t ↓ 0 in the above calculations. Observe that
for t small, δ(p/t) ∼ −(1− ρ2)σ2p2/t2, and so:

T ∗(p/t) ∼ 2t

σ|p|
√

1− ρ2

[
π1ρp≤0 + sgn(p) arctan

(√1− ρ2

ρ

)]
, for ρ 6= 0, p 6= 0,

∼ πt

σ|p|
, for ρ = 0, p 6= 0,

= ∞, for p = 0.

Hence, for t > 0 small, the set {t < T ∗(p/t)} may be written equivalently as p ∈ (p−, p+)
where p− < 0 is defined by

p− =



2 arctan

(√
1−ρ2
ρ

)
σ
√

1−ρ2
, if ρ < 0

−π
σ , if ρ = 0

−2π+2 arctan

(√
1−ρ2
ρ

)
σ
√

1−ρ2
, if ρ > 0
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and p+ > 0 is defined by

p+ =



2π+2 arctan

(√
1−ρ2
ρ

)
σ
√

1−ρ2
, if ρ < 0

π
σ , if ρ = 0

2 arctan

(√
1−ρ2
ρ

)
σ
√

1−ρ2
, if ρ > 0.

Moreover, by observing that t
√
−δ(p/t) ∼ σ

√
1− ρ2|p|, we find that for all p ∈ (p−, p+):

tψ(t, p/t) ∼ p

σ

1√
1− ρ2 cot

(σp√1−ρ2
2

)
− ρ

tφ(t, p/t) ∼ t
κθ

σ2

[
− (ρσp+ i

√
1− ρ2σ|p|)

+ 2 ln
( √

1− ρ2eiσ|p|
√

1−ρ2/2

−ρ sin
(σp√1−ρ2

2

)
+
√

1− ρ2 cos
(σp√1−ρ2

2

))].
We conclude that

Γ(p) =


p
σ

y0√
1−ρ2 cot

(
σp
√

1−ρ2
2

)
−ρ
, for p ∈ (p−, p+)

∞, otherwise.

From the basic properties of moment generating function, we know that Γ is convex, lower-
semicontinuous, and by direct inspection, we easily see that Γ is smooth on (p−, p+) with
Γ(p) and |Γ′(p)| →∞ as p ↑ p+ and p ↓ p−. We can then apply Ellis-Gärtner theorem, which
implies that Xt − x0 satisfies a LDP with rate function Γ∗ equal to the Fenchel-Legendre
transform of Γ, i.e.

Γ∗(x) = sup
p∈(p−,p+)

[px− Γ(p)], x ∈ R. (5.10)

For any x ∈ R, the supremum in (5.10) is attained at a point p∗ = p∗(x) solution to x =
Γ′(p∗). From Jensen’s inequality, notice that for all t > 0, p ∈ R, Γt(p) ≥ E[ln ep(Xt−x0)] =
p(E[Xt]− x0). Since E[Xt] → x0 as t goes to zero, this implies that Γ(p) = limt→0 tΓ(p/t)
≥ 0 for all p ∈ R, and thus Γ∗(0) = 0. It follows that for any x ≥ 0, p < 0, px − Γ(p) ≤
−Γ(p) ≤ Γ∗(0) = 0. Therefore, Γ∗(x) = supp∈[0,p+)[px − Γ(p)], for x ≥ 0, which implies
that Γ∗ is nondecreasing on R+. Similarly, Γ∗(x) = supp∈(p−,0][px − Γ(p)], for x ≤ 0, and
so Γ∗ is nonincreasing on R−. The LDP for Xt − x0 can then be formulated as:

lim
t→0

t ln P[Xt − x0 ≥ k] = − inf
x≥k

Γ∗(x) = −Γ∗(k), ∀k ≥ 0, (5.11)

lim
t→0

t ln P[Xt − x0 ≤ k] = − inf
x≤k

Γ∗(x) = −Γ∗(k), ∀k ≤ 0. (5.12)

Explicit calculations for the moment generating functions can be obtained more generally
for affine stochastic volatility models, see [20], [37], [32].
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Pricing. As a direct corollary of this LDP for the log-stock price, we obtain a rare
event estimate for pricing out-of-the money call options of small maturity:

lim
t→0

t ln E[(St −K)+] = −Γ∗(x) = lim
t→0

t ln P[St ≥ K]. (5.13)

where x = ln(K/S0) > 0 is the log-moneyness. A similar result holds for out-of-the money
put options. Let us first show the lower bound. For any ε > 0, we have

E[(St −K)+] ≥ E[(St −K)+1St−K≥ε] ≥ εP[St ≥ K + ε]. (5.14)

By using the LDP (5.11), we then get

lim inf
t→0

t ln E[(St −K)+] ≥ lim inf
t→0

t ln P[St ≥ K + ε] = lim inf
t→0

t ln P
[
Xt − x0 ≥ ln

(K + ε

S0

)]
≥ −Γ∗

(
ln
(K + ε

S0

))
.

By sending ε to zero, and from the continuity of Γ∗, we obtain the desired lower bound. To
show the upper bound, we apply Hölder inequality for any p, q > 1, 1/p+ 1/q = 1, to get

E[(St −K)+] = E[(St −K)+1St≥K ] ≤
(
E[(St −K)p+]

) 1
p
(
E[1St≥K ]

) 1
q

≤
(
E[Spt ]

) 1
p
(
P[St ≥ K]

) 1
q
.

Taking ln and multiplying by t, this implies

t ln E[(St −K)+] ≤ t

p
ln E[Spt ] +

(
1− 1

p

)
t ln P[St ≥ K]

= tx0 +
t

p
Γt(p) +

(
1− 1

p

)
t ln P[St ≥ K].

Now, for fixed p, we easily check that Γt(p) → 0 as t goes to zero. It follows from the LDP
(5.11) that

lim sup
t→0

t ln E[(St −K)+] ≤ −
(

1− 1
p

)
Γ∗(x).

By sending p to infinity, we obtain the required upper-bound and so finally the rare event
estimate in (5.13).

Implied volatility. We can also analyze the asymptotic behaviour for the implied
volatility. Recall that the implied volatility σt = σt(x) of a call option on St with strike K
= S0e

x, and time to maturity t is determined from the relation:

E[(St −K)+] = CBS(t, S0, x, σt) := S0Φ(d1(t, x, σt))− S0e
xΦ(d2(t, x, σt)), (5.15)

where

d1(t, x, σ) =
−x+ 1

2σ
2t

σ
√
t

, d2(t, x, σ) = d1(t, x, σ)− σ
√
t,
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and Φ(d) =
∫ d
−∞ ϕ(x)dx is the cdf of the normal law N (0, 1). As a consequence of the large

deviation pricing (5.13), we compute the asymptotic implied volatility for out-of-the money
call options of small maturity:

lim
t→0

σt(x) =
x√

2Γ∗(x)
, ∀x > 0. (5.16)

The derivation relies on the standard estimate on Φ (see section 14.8 in [51]):(
d+

1
d

)−1
ϕ(d) ≤ 1− Φ(d) ≤ 1

d
ϕ(d), ∀d > 0, (5.17)

which implies that 1−Φ(d) ∼ ϕ(d)/d as d goes to infinity. Now, since the out-of-the money
(x > 0) call option price E[(St−K)+] goes to zero as t→ 0, we see from the relation (5.15)
defining the implied volatility that σt

√
t → 0, and so d1 = d1(t, x, σt) → −∞. Then, from

(5.13) and (5.15), for any ε > 0, we have for t small enough

exp
(
− Γ∗(x) + ε

t

)
≤ E[(St −K)+] ≤ S0Φ(d1) = S0

(
1− Φ(−d1)

)
≤ S0

−d1
ϕ(−d1)

Taking t ln in the above inequality, and sending t to zero, we deduce that

−(Γ∗(x) + ε) ≤ − x2

2 lim inft→0 σ2
t

,

which proves the lower bound in (5.16) by sending ε to zero. For the upper bound, fix t

the maturity of the option, and denote by Sσt the Black-Scholes price with the constant
implied volatility σt. Then, from (5.13) and as in (5.14), for all ε > 0, we have for t small
enough,

exp
(
− Γ∗(x)− ε

t

)
≥ E[(St −K)+] = E[(Sσtt −K)+]

≥ εP[Sσtt ≥ K + ε] = εΦ(d2,ε) = ε
(
1− Φ(−d2,ε)

)
≥

(
|d2,ε|+

1
|d2,ε|

)−1
ϕ(−d2,ε)

where

d2,ε = −
ln
(
K+ε
S0

)
+ 1

2σ
2
t t

σt
√
t

→ −∞,

as t goes to zero. Taking t ln in the above inequality, and sending t to zero, we deduce that

−(Γ∗(x)− ε) ≥ −

(
ln
(
K+ε
S0

))2

2 lim supt→0 σ
2
t

,

which proves the upper bound in (5.16) by sending ε to zero, and finally the desired result.
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5.2 General stochastic volatility model

We consider now a general (uncorrelated) stochastic volatility model for the log-stock price
Xt = lnSt given by

dXt = −1
2
σ2(Yt)dt+ σ(Yt)dW 1

t

dYt = η(Yt)dt+ γ(Yt)dW 2
t ,

with X0 = x0, Y0 = y0, W 1 and W 2 are two independent Brownian motions, η, σ > 0,
and γ > 0 are bounded and Lipschitz continuous functions on R. We derive the asymp-
totic behaviour of Xt − x0 as t goes to zero by using the Fredlin-Wentzell theory of large
deviations. By time scaling, we see that for any ε > 0, the process t → (Xεt − x0, Yεt) has
the same distribution as (Xε − x0, Y

ε) defined by

dXε
t = −ε

2
σ(Yt)2dt+

√
εσ(Y ε

t )dW 1
t

dY ε
t = εη(Y ε

t )dt+
√
εγ(Y ε

t )dW 2
t .

Now, from the Freidlin-Wentzell or Varadhan sample path large deviations result recalled
in Section 2.6, we know that (Xε

t − x0, Y
ε
t )0≤t≤1 satisfies a LDP in C([0, 1]) as ε goes to

zero, with rate function

I(x(.), y(.)) =
1
2

∫ 1

0

[ ẋ(t)2

f(y(t))2
+

ẏ(t)2

γ(y(t))2

]
dt,

for all (x(.), y(.)) ∈ H([0, 1]) s.t. (x(0), y(0)) = (0, y0). Then by applying contraction
principle (see Theorem 2.2), we deduce that Xε

1 − x0, as ε goes to zero, and so Xt − x0, as
t goes to zero, satisfies a LDP in R with the rate function ι : R → [0,∞] given by

ι(k) = inf{
(x,y)∈H([0,1]),(x(0),y(0))=(0,y0), x(1)=k

} 1
2

∫ 1

0

[ ẋ(t)2

f(y(t))2
+

ẏ(t)2

γ(y(t))2

]
dt.

The quantity d(k) =
√

2ι(k) is actually the distance from (0, y0) to the line {x = k} on
the plane R2 for the Riemannian metric defined by the inverse of the diagonal matrix with
coefficients 1/f(y)2 and 1/γ(y)2. Hence, the LDP for Xt − x0 means that:

lim
t→0

t ln P[Xt − x0 ≥ k] = −1
2
d(k)2, ∀k ≥ 0.

The calculation of d(k), and so the determination of the distance-minimizing geodesic
(x∗, y∗) from (0, y0) to the line {x = k}, is a differential geometry problem associated
to a calculus of variations problem, but which does not have in general explicit solutions
(see [23] for some details). The solution to this problem can be also characterized by PDE
methods through a nonlinear eikonal equation, see [7].

Next, one can derive by same arguments as in the previous paragraph, a rare event
estimate for pricing out-of-the money call options of small maturity:

lim
t→0

t ln E[(St −K)+] = = lim
t→0

t ln P[St ≥ K] = −1
2
d2(x),
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where x = ln(K/S0) > 0 is the log-moneyness. This implies the corresponding asymptotic
behaviour for the implied volatility:

lim
t→0

σt(x) =
x

d(x)
.

6 Large deviations in risk management

6.1 Large portfolio losses in credit risk

6.1.1 Portfolio credit risk in a single factor normal copula model

A basic problem in measuring portfolio credit risk is determining the distribution of losses
from default over a fixed horizon. Credit portfolios are often large, including exposure to
thousands of obligors, and the default probabilities of high-quality credits are extremely
small. These features in credit risk context lead to consider rare but significant large loss
events, and emphasis is put on the small probabilities of large losses, as these are relevant
for calculation of value at risk and related risk measures.

We use the following notation:

n = number of obligors to which portfolio is exposed,
Yk = default indicator (= 1 if default, 0 otherwise) for k-th obligor,
pk = marginal probability that k-th obligor defaults, i.e. pk = P[Yk = 1],
ck = loss resulting from default of the k-th obligor,
Ln = c1Y1 + . . .+ cnYn = total loss from defaults.

We are interested in estimating tail probabilities P[Ln > `n] in the limiting regime at
increasingly high loss thresholds `n, and rarity of large losses resulting from a large number
n of obligors and multiple defaults.

For simplicity, we consider a homogeneous portfolio where all pk are equal to p, and
all ck are equal constant to 1. An essential feature for credit risk management is the
mechanism used to model the dependence across sources of credit risk. The dependence
among obligors is modelled by the dependence among the default indicators Yk. This
dependence is introduced through a normal copula model as follows: each default indicator
is represented as

Yk = 1{Xk>xk}, k = 1, . . . , n,

where (X1, . . . , Xn) is a multivariate normal vector. Without loss of generality, we take each
Xk to have a standard normal distribution, and we choose xk to match the marginal default
probability pk, i.e. xk = Φ−1(1− pk) = −Φ−1(pk), with Φ cumulative normal distribution.
We also denote ϕ = Φ′ the density of the normal distribution. The correlations along the
Xk, which determine the dependence among the Yk, are specified through a single factor
model of the form:

Xk = ρZ +
√

1− ρ2εk, k = 1, . . . , n. (6.1)

where Z has the standard normal distribution N (0, 1), εk are independent N (0, 1) distribu-
tion, and Z is independent of εk, k = 1, . . . , n. Z is called systematic risk factor (industry,
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regional risk factors for example ...), and εk is an idiosyncratic risk associated with the k-th
obligor. The constant ρ in [0, 1) is a factor loading on the single factor Z, and assumed
here to be identical for all obligors. We shall distinguish the case of independent obligors
(ρ = 0), and dependent obligors (ρ > 0). More general multivariate factor models with in-
homogeneous obligors are studied in [27]. Other recent works dealing with large deviations
in credit risk include the paper [47], which analyzes rare events related to losses in senior
traches of CDO, and the paper [40], which studies the portfolio loss process.

6.1.2 Independent obligors

In this case, ρ = 0, the default indicators Yk are i.i.d. with Bernoulli distribution of
parameter p, and Ln is a binomial distribution of parameters n and p. By the law of large
numbers, Ln/n converges to p. Hence, in order that the loss event {Ln ≥ ln} becomes rare
(without being trivially impossible), we let ln/n approach q ∈ (p, 1). It is then appropriate
to specify ln = nq with p < q < 1. From Cramer’s theorem and the expressions of the
c.g.f. of the Bernoulli distribution and its Fenchel-Legendre transform, we obtain the large
deviation result for the loss probability:

lim
n→

1
n

ln P[Ln ≥ nq] = −q ln
(q
p

)
− (1− q) ln

(1− q
1− p

)
< 0.

Remark 6.1 By denoting Γ(θ) = ln(1−p+peθ) the c.g.f. of Yk, we have an IS (unbiased)
estimator of P[Ln ≥ nq] by taking the average of independent replications of

exp(−θLn + nΓ(θ))1Ln≥nq

where Ln is sampled with a default probability p(θ) = Pθ[Yk = 1] = peθ/(1 − p + peθ).
Moreover, see Remark 2.3, this estimator is asymptotically optimal, as n goes to infinity,
for the choice of parameter θq ≥ 0 attaining the argmax in θq − Γ(θ).

6.1.3 Dependent obligors

We consider the case where ρ > 0. Then, conditionally on the factor Z, the default indicators
Yk are i.i.d. with Bernoulli distribution of parameter:

p(Z) = P[Yk = 1|Z] = P[ρZ +
√

1− ρ2εk > −Φ−1(p)|Z]

= Φ
(ρZ + Φ−1(p)√

1− ρ2

)
. (6.2)

Hence, by the law of large numbers, Ln/n converges in law to the random variable p(Z)
valued in (0, 1). In order that {Ln ≥ ln} becomes a rare event (without being impossible)
as n increases, we therefore let ln/n approach 1 from below. We then set

ln = nqn, with qn < 1, qn ↗ 1 as n→∞. (6.3)

Actually, we assume that the rate of increase of qn to 1 is of order n−a with a ≤ 1:

1− qn = O(n−a), with 0 < a ≤ 1. (6.4)

We then state the large deviations result for the large loss threshold regime.
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Theorem 6.1 In the single-factor homogeneous portfolio credit risk model (6.1), and with
large threshold ln as in (6.3)-(6.4), we have

lim
n→∞

1
lnn

ln P[Ln ≥ nqn] = −a1− ρ2

ρ2
.

Observe that in the above theorem, we normalize by lnn, indicating that the probability
decays like n−γ , with γ = a(1− ρ2)/ρ2. We find that the decay rate is determined by the
effect of the dependence structure in the Gaussian copula model. When ρ is small (weak
dependence between sources of credit risk), large losses occur very rarely, which is formalized
by a high decay rate. In the opposite case, this decay rate is small when ρ tends to one,
which means that large losses are most likely to result from systematic risk factors.

Proof. 1) We first prove the lower bound:

lim inf
n→∞

1
lnn

ln P[Ln ≥ nqn] ≥ −a1− ρ2

ρ2
. (6.5)

From Bayes formula, we have

P[Ln ≥ nqn] ≥ P[Ln ≥ nqn, p(Z) ≥ qn]

= P[Ln ≥ nqn|p(Z) ≥ qn] P[p(Z) ≥ qn]. (6.6)

For any n ≥ 1, we define zn ∈ R the solution to

p(zn) = qn, n ≥ 1.

Since p(.) is an increasing one to one function, we have {p(Z) ≥ qn} = {Z ≥ zn}. Moreover,
observing that Ln is an increasing function of Z, we get

P[Ln ≥ nqn|p(Z) ≥ qn] = P[Ln ≥ nqn|Z ≥ zn]

≥ P[Ln ≥ nqn|Z = zn] = P[Ln ≥ nqn|p(Z) = qn],

so that from (6.6)

P[Ln ≥ nqn] ≥ P[Ln ≥ nqn|p(Z) = qn]P[Z ≥ zn]. (6.7)

Now given p(Z) = qn, Ln is binomially distributed with parameters n and qn, and thus

P[Ln ≥ nqn|p(Z) = qn] ≥ 1− Φ(0) =
1
2

(> 0). (6.8)

We focus on the tail probability P[Z ≥ zn] as n goes to infinity. First, observe that since
qn goes to 1, we have zn going to infinity as n tends to infinity. Furthermore, from the
expression (6.2) of p(z), the rate of decrease (6.4), and using the property that 1−Φ(x) '
ϕ(x)/x as x → ∞, we have

O(n−a) = 1− qn = 1− p(zn) = 1− Φ
(ρzn + Φ−1(p)√

1− ρ2

)
'

√
1− ρ2

ρzn + Φ−1(p)
exp

(
− 1

2
(ρzn + Φ−1(p)√

1− ρ2

)2)
,
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as n → ∞, so that by taking logarithm:

a lnn− 1
2
ρ2z2

n

1− ρ2
− ln zn = O(1).

This implies

lim
n→∞

z2
n

lnn
= 2a

1− ρ2

ρ2
. (6.9)

By writing

P[Z ≥ zn] = P[zn ≤ Z ≤ zn + 1]

≥ 1√
2π

exp
(
− 1

2
(zn + 1)2

)
,

we deduce with (6.9)

lim inf
n→∞

1
lnn

ln P[Z ≥ zn] ≥ a
1− ρ2

ρ2
.

Combining with (6.7) and (6.8), we get the required lower bound (6.5).

2) We now focus on the upper bound

lim sup
n→∞

1
lnn

ln P[Ln ≥ nqn] ≤ −a1− ρ2

ρ2
. (6.10)

We introduce the conditional c.g.f. of Yk:

Γ(θ, z) = ln E
[
eθYk |Z = z] (6.11)

= ln(1− p(z) + p(z)eθ). (6.12)

Then, for any θ ≥ 0, we get by Chebichev’s inequality,

P[Ln ≥ nqn|Z] ≤ E
[
eθ(Ln−nqn)|Z

]
= e−n(θqn−Γ(θ,Z)),

so that

P[Ln ≥ nqn|Z] ≤ e−nΓ∗(qn,Z), (6.13)

where

Γ∗(q, z) = sup
θ≥0

[θq − Γ(θ, z)] =

{
0, if q ≤ p(z)

q ln
( q
p(z)

)
+ (1− q) ln

( 1−q
1−p(z)

)
, if p(z) < q ≤ 1.

By taking expectation on both sides on (6.13), we get

P[Ln ≥ nqn] ≤ E
[
eFn(Z)

]
, (6.14)

where we set Fn(z) = −nΓ∗(qn, z). Since ρ > 0, the function p(z) is increasing in z, so
Γ(θ, z) is an increasing function of z for all θ ≥ 0. Hence, Fn(z) is an increasing function of
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z, which is nonpositive and attains its maximum value 0, for all z s.t. qn = p(zn) ≤ p(z),
i.e. z ≥ zn. Moreover, by differentiation, we can check that Fn is a concave function of z.
We now introduce a change of measure. The idea is to shift the factor mean to reduce the
variance of the term eFn(Z) in the r.h.s. of (6.14). We consider the change of measure Pµ
that puts the distribution of Z to N (µ, 1). Its likelihood ratio is given by

dPµ
dP

= exp
(
µZ − 1

2
µ2
)
,

so that

E
[
eFn(Z)

]
= Eµ

[
eFn(Z)−µZ+ 1

2
µ2]

,

where Eµ denotes the expectation under Pµ. By concavity of Fn, we have Fn(Z) ≤ Fn(µ)+
F ′n(µ)(Z − µ), so that

E
[
eFn(Z)

]
≤ Eµ

[
eFn(µ)+(F ′n(µ)−µ)Z−µF ′n(µ)+ 1

2
µ2]

. (6.15)

We now choose µ = µn solution to

F ′n(µn) = µn, (6.16)

so that the term in the expectation in the r.h.s. of (6.15) does not depend on Z, and is
therefore a constant term (with zero-variance). Such a µn exists, since, by strict concavity
of the function z → Fn(z) − 1

2z
2, equation (6.16) is the first-order equation associated to

the optimization problem:

µn = arg max
µ∈R

[Fn(µ)− 1
2
µ2].

With this choice of factor mean µn, and by inequalities (6.14), (6.15), we get

P[Ln ≥ nqn] ≤ eFn(µn)− 1
2
µ2
n . (6.17)

We now prove that µn/zn converges to 1 as n goes to infinity. Actually, we show that for
all ε > 0, there is n0 large enough so that for all n ≥ n0, zn(1 − ε) < µn < zn. Since
F ′n(µn) − µn = 0, and the function F ′n(z) − z is decreasing by concavity Fn(z) − z2/2, it
suffices to show that

F ′n(zn(1− ε))− zn(1− ε) > 0 and F ′n(zn)− zn < 0. (6.18)

We have

F ′n(z) = n
(p(zn)
p(z)

− 1− p(zn)
1− p(z)

)
ϕ
(ρz + Φ−1(p)√

1− ρ2

) ρ√
1− ρ2

.

The second inequality in (6.18) holds since F ′n(zn) = 0 and zn > 0 for qn > p, hence for
n large enough. Actually, zn goes to infinity as n goes to infinity from (6.9). For the first
inequality in (6.18), we use the property that 1− Φ(x) ' ϕ(x)/x as x → ∞, so that

lim
n→∞

p(zn)
p(zn(1− ε))

= 1, and lim
n→∞

1− p(zn)
1− p(zn(1− ε))

= 0.
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From (6.9), we have

ϕ
(ρzn(1− ε) + Φ−1(p)√

1− ρ2

)
= 0(n−a(1−ε)2),

and therefore

F ′n(zn(1− ε)) = 0(n1−a(1−ε)2).

Moreover, from (6.9) and as a ≤ 1, we have

zn(1− ε) = 0(
√

lnn) = o(n1−a(1−ε)2)

We deduce that for n large enough F ′n(zn(1− ε))− zn(1− ε) > 0 and so (6.18).
Finally, recalling that Fn is nonpositive, and from (6.17), we obtain:

lim sup
n→∞

1
lnn

ln P[Ln ≥ nqn] ≤ −1
2

lim
n→

µ2
n

lnn
= −1

2
lim
n→

z2
n

lnn
= −a1− ρ2

ρ2
. (6.19)

2

Application: asymptotic optimality of two-step importance sampling estimator

Consider the estimation problem of P[Ln ≥ nq]. We apply a two-step importance sampling
(IS) by using IS conditional on the common factors Z and IS to the distribution of the
factors Z. Observe that conditioning on Z reduces to the problem of the independent case
studied in the previous paragraph, with default probability p(Z) as defined in (6.2), and
c.g.f. Γ(., Z) in (6.11). Choose θqn(Z) ≥ 0 attaining the argmax in θqn − Γ(θ, Z), and
return the estimator

exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn ,

where Ln is sampled with a default probability p(θq(Z), Z) = p(Z)eθqn (Z)/(1 − p(Z) +
p(Z)eθqn (Z)). This provides an unbiased conditional estimator of P[Ln ≥ nqn|Z] and an
asymptotically optimal conditional variance. We further apply IS to the factor Z ∼ N (0, 1)
under P, by shifting the factor mean to µ, and then considering the estimator

exp(−µZ +
1
2
µ2) exp(−θqn(Z)Ln + nΓ(θqn(Z), Z))1Ln≥nqn , (6.20)

where Z is sampled from N (µ, 1). To summarize, the two-step IS estimator is generated as
follows:

• Sample Z from N (µ, 1)

• Compute θqn(Z) and p(θqn(Z), Z)

• Return the estimator (6.20) where Ln is sampled with default probability p(θqn(Z), Z).

By construction, this provides an unbiaised estimator of P[Ln ≥ nqn], and the key point
is to specify the choice of µ in order to reduce the global variance or equivalently the
second moment M2

n(µ, qn) of this estimator. First, recall from Cauchy-Schwarz’s inequality:
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M2
n(µ, qn) ≥ (P[Ln ≥ nq])2, so that the fastest possible rate of decay of M2

n(µ, qn) is twice
the probability itself:

lim inf
n→∞

1
lnn

lnM2
n(qn, µ) ≥ 2 lim

n→∞

1
lnn

ln P[Ln ≥ nqn]. (6.21)

To achieve this twice rate, we proceed as follows. Denoting by Ē the expectation under the
IS distribution, we have

M2
n(µ, qn) = Ē

[
exp(−2µZ + µ2) exp(−2θqn(Z)Ln + 2nΓ(θqn(Z), Z))1Ln≥nqn

]
≤ Ē

[
exp(−2µZ + µ2) exp(−2nθqn(Z)qn + 2nΓ(θqn(Z), Z))

]
= Ē

[
exp(−2µZ + µ2 + 2Fn(Z))

]
,

by definition of θqn(Z) and Fn(z) = −n supθ≥0[θqn−Γ(θ, z)] introduced in the proof of the
upper bound in Theorem 6.1. As in (6.15), (6.17), by choosing µ = µn solution to F ′n(µn)
= µn, we then get

M2
n(µn, qn) ≤ exp(2Fn(µn)− µ2

n) ≤ exp(−µ2
n),

since Fn is nonpositive. From (6.19), this yields

lim sup
n→∞

1
lnn

lnM2
n(µn, qn) ≤ −2a

1− ρ2

ρ2
= 2 lim

n→∞

1
lnn

ln P[Ln ≥ nqn],

which proves together with (6.21) that

lim
n→∞

1
lnn

lnM2
n(µn, qn) = −2a

1− ρ2

ρ2
= 2 lim

n→∞

1
lnn

ln P[Ln ≥ nqn],

and thus the estimator (6.20) for the choice µ = µn is asymptotically optimal. The choice
of µ = zn also leads to an asymptotically optimal estimator.

Remark 6.2 We also prove by similar methods large deviation results for the loss distri-
bution in the limiting regime where individual loss probabilities decrease toward zero, see
[27] for the details. This setting is relevant to portfolios of highly-rated obligors, for which
one-year default probabilities are extremely small. This is also relevant to measuring risk
over short time horizons. In this limiting regime, we set

ln = nq, with 0 < q < 1, p = pn = O(e−na), with a > 0.

Then,

lim
n→∞

1
n

ln P[Ln ≥ nq] = − a

ρ2
,

and we may construct similarly as in the case of large losses, a two-step IS asymptotically
optimal estimator.
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6.2 A large deviations approach to optimal long term investment

6.2.1 An asymptotic outperforming benchmark criterion

A popular approach for institutional managers is concerned about the performance of their
portfolio relative to the achievement of a given benchmark. This means that investors are
interested in maximizing the probability that their wealth exceed a predetermined index.
Equivalently, this may be also formulated as the problem of minimizing the probability
that the wealth of the investor falls below a specified value. This target problem was
studied by several authors for a goal achievement in finite time horizon, see e.g. [10] or
[21]. Recently, and in a static framework, the paper [49] considered an asymptotic version
of this outperformance criterion when time horizon goes to infinity, which leads to a large
deviations portfolio criterion. To illustrate the purpose, let us consider the following toy
example. Suppose that an investor trades a number α of shares in stock of price S, and
keep it until time T . Her wealth at time T is then Xα

T = αST . For simplicity, we take a
Bachelier model for the stock price: St = µt + σWt, where W is a Brownian motion. We
now look at the behavior of the average wealth when time horizon T goes to infinity. By
the law of large numbers, for any α ∈ R, the average wealth converges a.s. to:

X̄α
T :=

Xα
T

T
= αµ+ ασ

WT

T
−→ αµ,

when T goes to infinity. When considering positive stock price, as in the Black-Scholes
model, the relevant ergodic mean is the average of the growth rate, i.e. the logarithm of
the wealth. Fix some benchmark level x ∈ R. Then, from Cramer’s theorem, the probability
of outperforming x decays exponentially fast as:

P[X̄α
T ≥ x] ' e−I(x,α)T ,

in the sense that limT→∞
1
T ln P[X̄α

T ≥ x] = −I(x, α), where

I(x, α) = sup
θ∈R

[θx− Γ(θ, α)]

Γ(θ, α) =
1
T

ln E[eθX
α
T ].

Thus, the lower is the decay rate I(x, α), the more chance there is of realizing a portfolio
performance above x. The asymptotic version of the outperforming benchmark criterion is
then formulated as:

sup
α∈R

lim
T→∞

1
T

ln P[X̄α
T ≥ x] = − inf

α∈R
I(x, α). (6.22)

In this simple example, the quantities involved are all explicit:

Γ(θ, α) = θαµ+
(θασ)2

2

I(x, α) =


1
2

(
αµ−x
ασ

)2
, α 6= 0

0, α = 0, x = 0
∞, α = 0, x 6= 0.
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The solution to (6.22) is then given by α∗ = x/µ, which means that the associated expected
wealth E[X̄α∗

T ] is equal to the target x.
We now develop an asymptotic dynamic version of the outperformance management

criterion due to [42]. Such a problem corresponds to an ergodic objective of beating a given
benchmark, and may be of particular interest for institutional managers with long term
horizon, like mutual funds. On the other hand, stationary long term horizon problems are
expected to be more tractable than finite horizon problems, and should provide some good
insight for management problems with long, but finite, time horizon.

We formulate the problem in a rather abstract setting. Let Z = (X,Y ) be a process
valued in R × Rd, controlled by α, a control process valued in some subset A of Rq. We
denote by A the set of control processes. As usual, to alleviate notations, we omitted the
dependence of Z = (X,Y ) in α ∈ A. We shall then study the large deviations control
problem:

v(x) = sup
α∈A

lim sup
T→∞

1
T

ln P[X̄T ≥ x], x ∈ R, (6.23)

where X̄T = XT /T . The variable X should typically be viewed in finance as the (logarithm)
of the wealth process, Y are factors on market (stock, volatility ...), and α represents the
trading portfolio.

6.2.2 Duality to the large deviations control problem

The large deviations control problem (6.23) is a non standard stochastic control problem,
where the objective is usually formulated as an expectation of some functional to optimize.
In particular, in a Markovian continuous-time setting, we do not know if there is a dy-
namic programming principle and a corresponding Hamilton-Jacobi-Bellman equation for
our problem. We shall actually adopt a duality approach based on the relation relating
rate function of a LDP and cumulant generating function. The formal derivation is the
following. Given α ∈ A, if there is a LDP for X̄T = XT /T , its rate function I(., α) should
be related by the Fenchel-Legendre transform:

I(x, α) = sup
θ

[θx− Γ(θ, α)],

to the c.g.f.

Γ(θ, α) = lim sup
T→∞

1
T

ln E[eθXT ]. (6.24)

In this case, we would get

v(x) = sup
α∈A

lim sup
T→∞

1
T

ln P[X̄T ≥ x] = − inf
α∈A

I(x, α)

= − inf
α∈A

sup
θ

[θx− Γ(θ, α)],

and so, provided that one could intervert infinum and supremum in the above relation
(actually, the minmax theorem does not apply since A is not necessarily compact and α →
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θx− Γ(θ, α) is not convex):

v(x) = − sup
θ

[θx− Γ(θ)], (6.25)

where

Γ(θ) = sup
α∈A

Γ(θ, α) = sup
α∈A

lim sup
T→∞

1
T

ln E[eθXT ]. (6.26)

Problem (6.26) is the dual problem via (6.25) to the original problem (6.23). We shall
see in the next section that (6.26) can be reformulated as a risk-sensitive ergodic control
problem, which is more tractable than (6.23) and is studied by dynamic programming
methods leading in some cases to explicit calculations.

First, we show rigorously the duality relation between the large deviations control prob-
lem and the risk-sensitive control problem and how the optimal controls to the former one
are related to the latter one. This result may be viewed as an extension of the Gärtner-Ellis
theorem with control components.

Theorem 6.2 Suppose that there exists θ̄ ∈ (0,∞] such that for all θ ∈ [0, θ̄), there exists
a solution α̂(θ) ∈ A to the dual problem Γ(θ), with a limit in (6.24), i.e.

Γ(θ) = lim
T→∞

1
T

ln E
[
exp

(
θX

α̂(θ)
T

)]
. (6.27)

Suppose also that Γ(θ) is continuously differentiable on [0, θ̄). Then for all x < Γ′(θ̄) :=
limλ↗θ̄ Γ′(θ), we get

v(x) = − sup
θ∈[0,θ̄)

[θx− Γ(θ)] . (6.28)

Moreover, the sequence of controls

α∗,nt =

{
α̂t
(
θ
(
x+ 1

n

))
, Γ′(0) < x < Γ′(θ̄)

α̂t
(
θ
(
Γ′(0) + 1

n

))
, x ≤ Γ′(0),

with θ(x) ∈ (0, θ̄) s.t. Γ′(θ(x)) = x ∈ (Γ′(0),Γ′(θ̄)), is nearly optimal in the sense that

lim
n→∞

lim sup
T→∞

1
T

ln P
[
X̄α∗,n
T ≥ x

]
= v(x).

Proof.
Step 1. Let us consider the Fenchel-Legendre transform of the convex function Γ on [0, θ̄):

Γ∗(x) = sup
θ∈[0,θ̄)

[θx− Γ(θ)], x ∈ R. (6.29)

Since Γ is C1 on [0, θ̄), it is well-known (see e.g. Lemma 2.3.9 in [12]) that the function Γ∗

is convex, nondecreasing and satisfies:

Γ∗(x) =

{
θ(x)x− Γ(θ(x)), if Γ′(0) < x < Γ′(θ̄)

0, if x ≤ Γ′(0),
(6.30)
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θ(x)x− Γ∗(x) > θ(x)x′ − Γ∗(x′), ∀Γ′(0) < x < Γ′(θ̄), ∀x′ 6= x, (6.31)

where θ(x) ∈ (0, θ̄) is s.t. Γ′(θ(x)) = x ∈ (Γ′(0),Γ′(θ̄)). Moreover, Γ∗ is continuous on
(−∞,Γ′(θ̄)).

Step 2: Upper bound. For all x ∈ R, α ∈ A, an application of Chebycheff’s inequality yields:

P[X̄T ≥ x] ≤ exp(−θxT )E[exp(θXT )], ∀ θ ∈ [0, θ̄),

and so

lim sup
T→∞

1
T

ln P[X̄T ≥ x] ≤ −θx+ lim sup
T→∞

1
T

ln E[exp(θXT )], ∀ θ ∈ [0, θ̄).

By definitions of Γ and Γ∗, we deduce:

sup
α∈A

lim sup
T→∞

1
T

ln P[X̄α
T ≥ x] ≤ −Γ∗(x). (6.32)

Step 3: Lower bound. Given x < Γ′(θ̄), let us define the probability measure Qn
T on (Ω,FT )

via:

dQn
T

dP
= exp

[
θ(xn)Xα∗,n

T − ΓT (θ(xn), α∗,n)
]
, (6.33)

where xn = x+ 1/n if x > Γ′(0), xn = Γ′(0) + 1/n otherwise, α∗,n = α̂(θ(xn)), and

ΓT (θ, α) = ln E[exp(θXα
T )], θ ∈ [0, θ̄), α ∈ A.

Here n is large enough so that x+ 1/n < Γ′(θ̄). We now take ε > 0 small enough so that
x ≤ xn − ε and xn + ε < Γ′(θ̄). We then have:

1
T

ln P[X̄α∗,n
T ≥ x] ≥ 1

T
ln P

[
xn − ε < X̄α∗,n

T < xn + ε
]

=
1
T

ln
(∫

dP
dQn

T

1{xn−ε<X̄α∗,n
T <xn+ε}dQ

n
T

)
≥ −θ(xn) (xn + ε) +

1
T

ΓT (θ(xn), α∗,n)

+
1
T

ln Qn
T

[
xn − ε < X̄α∗,n

T < xn + ε
]
,

where we use (6.33) in the last inequality. By definition of the dual problem, this yields:

lim inf
T→∞

1
T

ln P[X̄α∗,n
T ≥ x] ≥ −θ(xn) (xn + ε) + Γ(θ(xn))

+ lim inf
T→∞

1
T

ln Qn
T

[
xn − ε < X̄α∗,n

T < xn + ε
]

≥ −Γ∗(xn)− θ(xn)ε

+ lim inf
T→∞

1
T

ln Qn
T

[
xn − ε < X̄α∗,n

T < xn + ε
]
, (6.34)

where the second inequality follows by the definition of Γ∗ (and actually holds with equality
due to (6.30)). We now show that:

lim inf
T→∞

1
T

lnQnT
[
xn − ε < X̄α∗,n

T < xn + ε
]

= 0. (6.35)
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Denote by Γ̃nT the c.g.f. under QnT of Xα∗,n
T . For all ζ ∈ R, we have by (6.33):

Γ̃nT (ζ) := lnEQnT [exp(ζXα∗,n
T )]

= ΓT (θ(xn) + ζ, α∗,n)− ΓT (θ(xn), α∗,n).

Therefore, by definition of the dual problem and (6.27), we have for all ζ ∈ [−θ(xn), θ̄ −
θ(xn)):

lim sup
T→∞

1
T

Γ̃nT (ζ) ≤ Γ(θ(xn) + ζ)− Γ(θ(xn)). (6.36)

As in part 1) of this proof, by Chebycheff’s inequality, we have for all ζ ∈ [0, θ̄ − θ(xn)):

lim sup
T→∞

1
T

ln Qn
T

[
X̄α∗,n
T ≥ xn + ε

]
≤ −ζ(xn + ε) + lim sup

T→∞

1
T

Γ̃nT (ζ)

≤ −ζ (xn + ε) + Γ(ζ + θ(xn))− Γ(θ(xn)),

where the second inequality follows from (6.36). We deduce

lim sup
T→∞

1
T

ln Qn
T

[
X̄α∗,n
T ≥ xn + ε

]
≤ − sup{ζ (xn + ε)− Γ(ζ) : ζ ∈ [θ(xn), θ̄)}

−Γ(θ(xn)) + θ(xn) (xn + ε)

≤ −Γ∗ (xn + ε)− Γ(θ(xn)) + θ(xn) (xn + ε) ,

= −Γ∗ (xn + ε) + Γ∗(xn) + εθ(xn), (6.37)

where the second inequality and the last equality follow from (6.30). Similarly, we have for
all ζ ∈ [−θ(xn), 0]:

lim sup
T→∞

1
T

ln Qn
T

[
X̄α∗,n
T ≤ xn − ε

]
≤ −ζ (xn − ε) + lim sup

T→∞

1
T

Γ̃nT (ζ)

≤ −ζ (xn − ε) + Γ(θ(xn) + ζ)− Γ(θ(xn)),

and so:

lim sup
T→∞

1
T

ln Qn
T

[
X̄α∗,n
T ≤ xn − ε

]
≤ − sup{ζ (xn − ε)− Γ(ζ) : ζ ∈ [0, θ(xn)]}

−Γ(θ(xn)) + θ(xn) (xn − ε)
≤ −Γ∗ (xn − ε) + Γ∗(θ(xn))− εθ(xn). (6.38)

By (6.37)-(6.38), we then get:

lim sup
T→∞

1
T

ln Qn
T

[{
X̄α∗,n
T ≤ xn − ε

}
∪
{
X̄α∗,n
T ≥ xn + ε

}]
≤ max

{
lim sup
T→∞

1
T

ln Qn
T

[
X̄α∗,n
T ≥ xn + ε

]
; lim sup
T→∞

1
T

ln Qn
T

[
X̄α∗,n
T ≤ xn − ε

]}
≤ max {−Γ∗ (xn + ε) + Γ∗(xn) + εθ(xn);−Γ∗ (xn − ε) + Γ∗(θ(xn))− εθ(xn)}
< 0,
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where the strict inequality follows from (6.31). This implies that Qn
T [{X̄α∗,n

T ≤ xn − ε} ∪
{X̄α∗,n

T ≥ xn + ε}] → 0 and hence Qn
T [xn − ε < X̄α∗,n

T < xn + ε] → 1 as T goes to infinity.
In particular (6.35) is satisfied, and by sending ε to zero in (6.34), we get:

lim inf
T→∞

1
T

ln P[X̄α∗,n
T ≥ x] ≥ −Γ∗(xn).

By continuity of Γ∗ on (−∞,Γ′(θ̄)), we obtain by sending n to infinity and recalling that
Γ∗(x) = 0 = Γ∗(Γ′(0)) for x ≤ Γ′(0):

lim inf
n→∞

lim inf
T→∞

1
T

ln P[X̄α∗,n
T ≥ x] ≥ −Γ∗(x).

This last inequality combined with (6.32) ends the proof. 2

Remark 6.3 Notice that in Theorem 6.2, the duality relation (6.28) holds for x < Γ′(θ̄).
When Γ′(θ̄) = ∞, we say that fonction Γ is steep, so that (6.28) holds for all x ∈ R. We
illustrate in the next section different cases where Γ is steep or not.

Remark 6.4 In financial applications, Xt is the logarithm of an investor’s wealth V α
t at

time t, αt is the proportion of wealth invested in q risky assets S and Y is some economic
factor influencing the dynamics of S and the savings account S0. Hence, in a diffusion
model, we have

dXt =
[
r(Yt) + α′t(µ(Yt)− r(Yt)eq)−

1
2
|α′tϑ(Yt)|2

]
dt+ α′tϑ(Yt)dWt,

where µ(y) (resp. ϑ(y)) is the rate of return (resp. volatility) of the risky assets, r(y) is
the interest rate, and eq is the unit vector in Rq.

Notice that the value function of the dual problem can be written as:

Γ(θ) = lim
T→∞

1
T

lnE
[
Uθ

(
V
α̂(θ)
T

)]
,

where Uθ(c) = cθ is a power utility function with Constant Relative Risk Aversion (CRRA)
1− θ > 0 provided that θ < 1. Then, Theorem 6.2 means that for any target level x, the
optimal overperformance probability of growth rate is (approximately) directly related, for
large T , to the expected CRRA utility of wealth, by:

P [X̄α∗
T ≥ x] ≈ E

[
Uθ(x)

(
V α∗
T

)]
e−θ(x)xT , (6.39)

with the convention that θ(x) = 0 for x ≤ Γ′(0). Hence, 1 − θ(x) can be interpreted as a
constant degree of relative risk aversion for an investor who has an overperformance target
level x. Moreover, by strict convexity of function Γ∗ in (6.29), it is clear that θ(x) is strictly
increasing for x > Γ′(0). So an investor with a higher target level x has a lower degree
of relative risk aversion 1 − θ(x). In summary, Theorem 6.2 (or relation (6.39)) inversely
relates the target level of growth rate to the degree of relative risk aversion in expected
utility theory.
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6.2.3 Explicit calculations to the dual risk-sensitive control problem

We now show that the dual control problem (6.26) may be transformed via a change of
probability measure into a risk-sensitive control problem. We consider the framework of a
general diffusion model for Z = (X,Y ):

dXt = b(Xt, Yt, αt)dt+ σ(Xt, Yt, αt)dWt in R (6.40)

dYt = η(Xt, Yt, αt)dt+ σ(Xt, Yt, αt)dWt in Rd, (6.41)

where W is a m-dimensional Brownian motion on a filtered probability space (Ω,F ,F =
(Ft)t≥0,P), and α = (αt)t≥0, the control process, is F-adapted and valued in some subset
A of Rq. We denote A the set of control processes. The coefficients b, η, σ and γ are
measurable functions of their arguments, and given α ∈ A and an initial condition, we
assume the existence and uniqueness of a strong solution to (6.40)-(6.41), which we also
write by setting Z = (X,Y ):

dZt = B(Zt, αt)dt+ Σ(Zt, αt)dWt. (6.42)

From the dynamics of X in (6.40), we may rewrite the Laplace transform of XT as:

E [exp (θXT )] = eθX0E
[
exp

(
θ

∫ T

0
b(Zt, αt)dt+ θ

∫ T

0
σ(Zt, αt)dWt

)]
= eθX0E

[
ξαT (θ) exp

(∫ T

0
`(θ, Zt, αt)dt

)]
, (6.43)

where

`(θ, z, a) = θb(z, a) +
θ2

2
|σ(z, a)|2,

and ξαt (θ) is the Doléans-Dade exponential local martingale

ξαt (θ) = E
(
θ

∫
σ(Zu, αu)dWu

)
t

:= exp
(
θ

∫ t

0
σ(Zu, αu)dWu −

θ2

2

∫ t

0
|σ(Zu, αu)|2du

)
, t ≥ 0. (6.44)

If ξα(θ) is a “true” martingale, it defines a probability measure Q under which, by Girsanov’s
theorem, the dynamics of Z is given by:

dZt = G(θ, Zt, αt)dt+ Σ(Zt, αt)dW
Q
t ,

where WQ is a Q-Brownian motion and

G(θ, z, a) =

(
b(z, a) + θ|σ(z, a)|2

η(z, a) + θγσ′(z, a)

)
.

Hence, the dual problem may be written as a stochastic control problem with exponential
integral cost criterion:

Γ(θ) = sup
α∈A

lim sup
T→∞

1
T

ln EQ
[
exp

(∫ T

0
`(θ, Zt, αt)dt

)]
, θ ≥ 0. (6.45)

52



For fixed θ, this is an ergodic risk-sensitive control problem which has been studied by
several authors, see e.g. [18], [8] or [48] in a discrete-time setting. It admits a dynamic
programming equation:

Λ(θ) = sup
a∈A

[
1
2

tr
(
ΣΣ′(z, a)D2φθ

)
+G(θ, z, a).∇φθ

+
1
2

∣∣Σ′(z, a)∇φθ
∣∣2 + `(θ, z, a)

]
, z ∈ Rd+1. (6.46)

The unknown is the pair (Λ(θ), φθ) ∈ R×C2(Rd+1), and Λ(θ) is a candidate for Γ(θ). The
above P.D.E. is formally derived by considering the finite horizon problem

uθ(T, z) = sup
α∈A

EQ
[
exp

(∫ T

0
`(θ, Zt, αt)dt

)]
,

by writing the Bellman equation for this classical control problem and by making the
logarithm transformation

lnuθ(T, z) ' Λ(θ)T + φθ(z),

for large T .
One can prove rigorously that a pair solution (Λ(θ), φθ) to the PDE (6.46) provides

a solution Λ(θ) = Γ(θ) to the dual problem (6.26), with an optimal control given by the
argument max in (6.46). This is called a verification theorem in stochastic control theory.
Actually, there may have multiple solutions φθ to (6.46) (even up to a constant), and
we need some ergodicity condition to select the good one that satisfies the verification
theorem. We refer to [43] for the details, and we illustrate our purpose through an example
with explicit calculations.

We consider a one-factor model where the bond price S0 and the stock price S evolve
according to:

dS0
t

S0
t

= (a0 + b0Yt)dt,
dSt
St

= (a+ bYt)dt+ σdWt,

with a factor Y as an Ornstein-Uhlenbeck ergodic process:

dYt = −kYtdt+ dBt,

where a0, b0, a, b are constants, k, σ are positive constants, and W , B are two Brownian mo-
tions, supposed non correlated for simplicity. This includes Black-Scholes, Platen-Rebolledo
or Vasicek models. The (self-financed) wealth process Vt with a proportion αt invested in
stock, follows the dynamics: dVt = αtVt

dSt
St

+ (1 − αt)Vt dS
0
t

S0
t

, and so the logarithm of the
wealth process Xt = lnVt is governed by a linear-quadratic model:

dXt = (β0Y
2
t + β1α

2
t + β2Ytαt + β3Yt + β4αt + β5)dt + (δ0Yt + δ1αt + δ2)dWt,(6.47)

where in our context, β0 = 0, β1 = −σ2/2, β2 = b− b0, β3 = b0, β4 = a− a0, β5 = a0, δ0 =
0, δ1 = σ and δ2 = 0. Without loss of generality, we may assume that σ = 1 and so β1 =
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−1/2 (embedded into α) and β5 = 0 (embedded into x). The P.D.E. (6.46) simplifies into
the search of a pair (Λ(θ), φθ) with φθ depending only on y and solution to:

Λ(θ) =
1
2
φ′′θ − kyφ′θ +

1
2
|φ′θ|2 + θ

(
β0 + θ

δ2
0

2

)
y2 + θ(β3 + θδ0δ2)y + θ2 δ

2
2

2

+
1
2

θ

1− θδ2
1

[(β2 + θδ0δ1)y + β4 + θδ1δ2]2 . (6.48)

Moreover, the maximum in a ∈ R of (6.46) is attained for

α̂(θ, y) =
(β2 + θδ0δ1)y + β4 + θδ1δ2

1− θδ2
1

. (6.49)

The above calculations are valid only for 0 ≤ θ < 1/δ2
1 . We are looking for a quadratic

solution to the ordinary differential equation (6.48):

φθ(y) =
1
2
A(θ)y2 +B(θ)y.

By substituting into (6.48), and cancelling terms in y2, y and constant terms, we obtain

• a polynomial second degree equation for A(θ)

• a linear equation for B(θ), given A(θ)

• Λ(θ) is then expressed explicitly in function of A(θ) and B(θ) from (6.48).

The existence of a solution to the second degree equation for A(θ), through the nonnegativ-
ity of the discriminant, allows to determine the bound θ̄ and so the interval [0, θ̄) on which
Λ is well-defined and finite. Moreover, we find two possible roots to the polynomial second
degree equation for A(θ), but only one satisfies the ergodicity condition. From Theorem
6.2, we deduce that

v(x) = − sup
θ∈[0,θ̄)

[
θx− Λ(θ)

]
, ∀x < Λ′(θ̄), (6.50)

with a sequence of nearly optimal controls given by:

α∗,nt =

{
α̂
(
θ
(
x+ 1

n

)
, Yt
)
, Λ′(0) < x < Λ′(θ̄)

α̂
(
θ
(
Λ′(0) + 1

n

)
, Yt
)
, x ≤ Λ′(0),

with θ(x) ∈ (0, θ̄) s.t. Λ′(θ(x)) = x. In the one-factor model described above, the function Λ
is steep, i.e. Λ′(θ̄) =∞, and so (6.50) holds for all x ∈ R. For example, in the Black-Scholes
model, i.e. b0 = b = 0, we obtain

Γ(θ) = Λ(θ) =
1
2

θ

1− θ

(a− a0

σ2

)2
, for θ < θ̄ = 1,

v(x) = − sup
θ∈[0,1)

[θx− Γ(θ)] =

{
−(
√
x−
√
x̄)2, if x ≥ x̄ := Γ′(0) = 1

2

(
a−a0
σ2

)2
0, if x < x̄,
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θ(x) = 1−
√
x̄/x if x ≥ x̄, and 0 otherwise, and

α∗t =

{ √
2x, if x ≥ x̄

a−a0
σ2 , if x < x̄.

We observe that for an index value x small enough, actually x < x̄, the optimal investment
for our large deviations criterion is equal to the optimal investment of the Merton’s problem
for an investor with relative risk aversion one. When the value index is larger than x̄, the
optimal investment is increasing with x, with a degree of relative risk aversion 1 − θ(x)
decreasing in x.

In the more general linear-quadratic model (6.47), Λ may be steep or not depending on
the parameters βi and δi. We refer to [43] for the details. Some variants and extensions of
this large deviations control problem are studied in [34], [1] or [33].
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